Searched for: in-biosketch:yes
person:paganm02
Modifications of cell cycle controlling nuclear proteins by transforming growth factor beta in the HaCaT keratinocyte cell line
Landesman, Y; Pagano, M; Draetta, G; Rotter, V; Fusenig, N E; Kimchi, A
PMID: 1385861
ISSN: 0950-9232
CID: 540032
Cyclin A is required at two points in the human cell cycle
Pagano, M; Pepperkok, R; Verde, F; Ansorge, W; Draetta, G
Cyclins play a fundamental role in regulating cell cycle events in all eukaryotic cells. The human cyclin A gene was identified as the site of integration of hepatitis B virus in a hepatocarcinoma cell line; in addition, cyclin A is associated with the E2F transcription factor in a complex which is dissociated by the E1A oncogene product. Such findings suggest that cyclin A is a target for oncogenic signals. We have now found that DNA synthesis and entry into mitosis are inhibited in human cells microinjected with anti-cyclin A antibodies at distinct times. Cyclin A binds both cdk2 and cdc2, giving two distinct cyclin A kinase activities, one appearing in S phase, the other in G2. These results suggest that cyclin A defines novel control points of the human cell cycle.
PMCID:556537
PMID: 1312467
ISSN: 0261-4189
CID: 540042
Association of cdk2 kinase with the transcription factor E2F during S phase
Pagano M; Draetta G; Jansen-Durr P
The transcription factor E2F controls the expression of several proliferation-related genes and is a target of the adenovirus E1A oncogene. In human cells, both cyclin A and the cdk2 protein kinase were found in complexes with E2F. Although the total amounts of cdk2 were constant in the cell cycle, binding to E2F was detected only when cells entered S phase, a time when the cdk2 kinase is activated. These data suggest that the interaction between cdk2 and E2F requires an active kinase that has cyclin A as a targeting component
PMID: 1312258
ISSN: 0036-8075
CID: 21105
cdc2 protein kinase: structure-function relationships
Marcote, M J; Pagano, M; Draetta, G
Activation of the cdc2 kinase in the cell cycle occurs upon binding to a regulatory subunit called cyclin. Cyclin A associates with both Cdc2 and its homologue Cdk2. The two complexes appear in S phase but cyclin A/Cdk2 is activated earlier than cyclin A/Cdc2. Several regions in Cdc2 are involved in binding cyclins A and B. Phosphorylation of cyclin/Cdk complexes ensures that the kinase activity peaks at a specific time in the cell cycle. Phosphorylation of Thr161 in Cdc2 is required for strong cyclin binding and kinase activity in vitro; its dephosphorylation is necessary for cells to exit mitosis. We have identified a novel 'Activating factor' that stimulates binding between cyclin and Cdc2 by inducing phosphorylation of Cdc2 on Thr161. We propose that Thr161 is targeted by an additional cell cycle regulatory pathway.
PMID: 1483349
ISSN: 0300-5208
CID: 540052
Cyclin A, cell cycle control and oncogenesis
Pagano, M; Draetta, G
One of the most fundamental questions in biology is how a cell is able to regulate its division cycle. Initially it was thought that in mammalian cells control over entry into the cell cycle is exerted at a restriction point in G1; once past this point the cell would be free to undergo all the steps needed until the following division. Hence, for many years research on tumorigenesis focused on the mitogenic activation of quiescent cells by growth factors, peptide hormones and oncogene products (for reviews see [1, 2]). These studies investigated the initial steps required to induce a quiescent, nondividing cell to proliferate, and led to the identification of many growth factor receptors, of both the tyrosine kinase family and the G-protein coupled family. Receptors bearing protein tyrosine phosphatase or serine kinase catalytic domains were also identified via this route (for reviews see [3, 4, 5]). However more recent studies on the cooperation between different growth factors for mitogenesis have shown that multiple requirements exist for a cell to proceed through the entire division cycle. Indeed studies in several different organisms, pioneered by investigators working with Ascomycetes [6, 7, 8], have now clearly shown that the eukaryotic cell cycle proceeds through multiple check-points. Furthermore, it now appears that many of the regulatory elements and even pathways have been conserved throughout evolution. In this review we discuss the possible involvement of one of the transducing molecules, cyclin A, in abnormal cell proliferation.
PMID: 1839823
ISSN: 0955-2235
CID: 540062