Searched for: in-biosketch:yes
person:neelb01
A role for nuclear PTEN in neuronal differentiation
Lachyankar, M B; Sultana, N; Schonhoff, C M; Mitra, P; Poluha, W; Lambert, S; Quesenberry, P J; Litofsky, N S; Recht, L D; Nabi, R; Miller, S J; Ohta, S; Neel, B G; Ross, A H
Mutations of phosphatase and tensin homolog deleted on chromosome 10 (PTEN), a protein and lipid phosphatase, have been associated with gliomas, macrocephaly, and mental deficiencies. We have assessed PTEN's role in the nervous system and find that PTEN is expressed in mouse brain late in development, starting at approximately postnatal day 0. In adult brain, PTEN is preferentially expressed in neurons and is especially evident in Purkinje neurons, olfactory mitral neurons, and large pyramidal neurons. To analyze the function of PTEN in neuronal differentiation, we used two well established model systems-pheochromocytoma cells and cultured CNS stem cells. PTEN is expressed during neurotrophin-induced differentiation and is detected in both the nucleus and cytoplasm. Suppression of PTEN levels with antisense oligonucleotides does not block initiation of neuronal differentiation. Instead, PTEN antisense leads to death of the resulting, immature neurons, probably during neurite extension. In contrast, PTEN is not required for astrocytic differentiation. These observations indicate that PTEN acts at multiple sites in the cell, regulating the transition of differentiating neuroblasts to postmitotic neurons.
PMID: 10662831
ISSN: 0270-6474
CID: 1365532
Activated mutants of SHP-2 preferentially induce elongation of Xenopus animal caps
O'Reilly, A M; Pluskey, S; Shoelson, S E; Neel, B G
In Xenopus ectodermal explants (animal caps), fibroblast growth factor (FGF) evokes two major events: induction of ventrolateral mesodermal tissues and elongation. The Xenopus FGF receptor (XFGFR) and certain downstream components of the XFGFR signal transduction pathway (e.g., members of the Ras/Raf/MEK/mitogen-activated protein kinase [MAPK] cascade) are required for both of these processes. Likewise, activated versions of these signaling components induce mesoderm and promote animal cap elongation. Previously, using a dominant negative mutant approach, we showed that the protein-tyrosine phosphatase SHP-2 is necessary for FGF-induced MAPK activation, mesoderm induction, and elongation of animal caps. Taking advantage of recent structural information, we now have generated novel, activated mutants of SHP-2. Here, we show that expression of these mutants induces animal cap elongation to an extent comparable to that evoked by FGF. Surprisingly, however, activated mutant-induced elongation can occur without mesodermal cytodifferentiation and is accompanied by minimal activation of the MAPK pathway and mesodermal marker expression. Our results implicate SHP-2 in a pathway(s) directing cell movements in vivo and identify potential downstream components of this pathway. Our activated mutants also may be useful for determining the specific functions of SHP-2 in other signaling systems.
PMCID:85085
PMID: 10594032
ISSN: 0270-7306
CID: 1365542
Phosphatases in the immune system
Neel, Benjamin G
London : Academic Press, [2000]
Extent: p. 345-415 ; 28 cm.
ISBN: n/a
CID: 1366332
The tyrosine phosphatase SHP-1 influences thymocyte selection by setting TCR signaling thresholds
Carter, J D; Neel, B G; Lorenz, U
Modulation of the strength of signals from the TCR determines the outcome of positive and negative selection in thymocyte development. Previous studies have demonstrated that SHP-1 plays a role in determining signal strength from the TCR. Here, we have taken a genetic approach to test whether SHP-1 plays a role in T cell selection in the thymus. Experiments in which a dominant negative mutant of SHP-1 was expressed in the BYDP hybridoma cell line confirmed that SHP-1 regulated TCR signaling in a cell-autonomous manner and suggested that Lck is one of its targets. To examine the role of SHP-1 in T cell development, we crossed the ovalbumin-specific DO11.10 TCR transgene onto the motheaten background, which lacks SHP-1 expression. Analysis of the progeny of these crosses provided evidence that SHP-1 regulates thymocyte selection: (i) flow cytometric analyses revealed alterations in the percentages of thymocyte subpopulations in the me/me background; (ii) ex vivo deletion experiments demonstrated that me/me:Tg thymocytes undergo negative selection at lower concentrations of OVA peptide compared to +/+:Tg thymocytes; and (iii) ex vivo proliferation analyses indicated that me/me:Tg thymocytes were hyper-sensitive to stimulation by the specific OVA peptide. Our observation that the absence of SHP-1 leads to altered selection of TCR transgenic thymocytes demonstrates that SHP-1 regulates the strength of TCR-mediated signals in vivo and, in turn, helps to set the threshold for thymocyte selection.
PMID: 10590266
ISSN: 0953-8178
CID: 1365552
SHPS-1 is a scaffold for assembling distinct adhesion-regulated multi-protein complexes in macrophages
Timms, J F; Swanson, K D; Marie-Cardine, A; Raab, M; Rudd, C E; Schraven, B; Neel, B G
Inhibitory immunoreceptors downregulate signaling by recruiting Src homology 2 (SH2) domain-containing tyrosine and/or lipid phosphatases to activating receptor complexes [1]. There are indications that some inhibitory receptors might also perform other functions [2] [3]. In adherent macrophages, two inhibitory receptors, SHPS-1 and PIR-B, are the major proteins binding to the tyrosine phosphatase SHP-1. SHPS-1 also associates with two tyrosine-phosphorylated proteins (pp55 and pp130) and a protein tyrosine kinase [4]. Here, we have identified pp55 and pp130 as the adaptor molecules SKAP55hom/R (Src-kinase-associated protein of 55 kDa homologue) and FYB/SLAP-130 (Fyn-binding protein/SLP-76-associated protein of 130 kDa), respectively, and the tyrosine kinase activity as PYK2. Two distinct SHPS-1 complexes were formed, one containing SKAP55hom/R and FYB/SLAP-130, and the other containing PYK2. Recruitment of FYB/SLAP-130 to SHPS-1 required SKAP55hom/R, whereas PYK2 associated with SHPS-1 independently. Formation of both complexes was independent of SHP-1 and tyrosine phosphorylation of SHPS-1. Finally, tyrosine phosphorylation of members of the SHPS-1 complexes was regulated by integrin-mediated adhesion. Thus, SHPS-1 provides a scaffold for the assembly of multi-protein complexes that might both transmit adhesion-regulated signals and help terminate such signals through SHP-1-directed dephosphorylation. Other inhibitory immunoreceptors might have similar scaffold-like functions.
PMID: 10469599
ISSN: 0960-9822
CID: 1365562
Identification of the erythropoietin receptor domain required for calcium channel activation
Miller, B A; Barber, D L; Bell, L L; Beattie, B K; Zhang, M Y; Neel, B G; Yoakim, M; Rothblum, L I; Cheung, J Y
Erythropoietin (Epo) activates a voltage-independent Ca2+ channel that is dependent on tyrosine phosphorylation. To identify the domain(s) of the Epo receptor (Epo-R) required for Epo-induced Ca2+ influx, Chinese hamster ovary (CHO) cells were transfected with wild-type or mutant Epo receptors subcloned into pTracer-cytomegalovirus vector. This vector contains an SV40 early promoter, which drives expression of the green fluorescent protein (GFP) gene, and a cytomegalovirus immediate-early promoter driving expression of the Epo-R. Successful transfection was verified in single cells by detection of GFP, and intracellular Ca2+ ([Ca]i) changes were simultaneously monitored with rhod-2. Transfection of CHO cells with pTracer encoding wild-type Epo-R, but not pTracer alone, resulted in an Epo-induced [Ca]i increase that was abolished in cells transfected with Epo-R F8 (all eight cytoplasmic tyrosines substituted). Transfection with carboxyl-terminal deletion mutants indicated that removal of the terminal four tyrosine phosphorylation sites, but not the tyrosine at position 479, abolished Epo-induced [Ca]i increase, suggesting that tyrosines at positions 443, 460, and/or 464 are important. In CHO cells transfected with mutant Epo-R in which phenylalanine was substituted for individual tyrosines, a significant increase in [Ca]i was observed with mutants Epo-R Y443F and Epo-R Y464F. The rise in [Ca]i was abolished in cells transfected with Epo-R Y460F. Results were confirmed with CHO cells transfected with plasmids expressing Epo-R mutants in which individual tyrosines were added back to Epo-R F8 and in stably transfected Ba/F3 cells. These results demonstrate a critical role for the Epo-R cytoplasmic tyrosine 460 in Epo-stimulated Ca2+ influx.
PMID: 10400674
ISSN: 0021-9258
CID: 1365572
Tyrosine phosphorylation of the proto-oncoprotein Raf-1 is regulated by Raf-1 itself and the phosphatase Cdc25A
Xia, K; Lee, R S; Narsimhan, R P; Mukhopadhyay, N K; Neel, B G; Roberts, T M
There is a growing body of evidence demonstrating that Raf-1 is phosphorylated on tyrosines upon stimulation of a variety of receptors. Although detection of Raf-1 tyrosine phosphorylation has remained elusive, genetic analyses have demonstrated it to be important for Raf-1 activation. Here we report new findings which indicate that Raf-1 tyrosine phosphorylation is regulated in vivo. In both a mammalian and baculovirus expression system, a kinase-inactive allele of Raf-1 was found to be tyrosine phosphorylated at levels much greater than that of wild-type Raf-1. The level of tyrosine phosphate on Raf-1 was markedly increased upon treatment with phosphatase inhibitors either before or after cell lysis. Cdc25A was found to dephosphorylate Raf-1 on tyrosines that resulted in a significant decrease in Raf-1 kinase activity. In NIH 3T3 cells, coexpression of wild-type Raf-1 and phosphatase-inactive Cdc25A led to a marked increase in Raf-1 tyrosine phosphorylation in response to platelet-derived growth factor. These data suggest that the tyrosine phosphorylation of Raf-1 is regulated not only by itself but also by Cdc25A.
PMCID:84280
PMID: 10373531
ISSN: 0270-7306
CID: 1365582
New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway
Cantley, L C; Neel, B G
The most recently discovered PTEN tumor suppressor gene has been found to be defective in a large number of human cancers. In addition, germ-line mutations in PTEN result in the dominantly inherited disease Cowden syndrome, which is characterized by multiple hamartomas and a high proclivity for developing cancer. A series of publications over the past year now suggest a mechanism by which PTEN loss of function results in tumors. PTEN appears to negatively control the phosphoinositide 3-kinase signaling pathway for regulation of cell growth and survival by dephosphorylating the 3 position of phosphoinositides.
PMCID:33561
PMID: 10200246
ISSN: 0027-8424
CID: 1365592
Receptor-type protein-tyrosine phosphatase mu is expressed in specific vascular endothelial beds in vivo
Bianchi, C; Sellke, F W; Del Vecchio, R L; Tonks, N K; Neel, B G
We investigated the localization of receptor-type protein-tyrosine phosphatase mu (RPTPmu) in tissues by immunofluorescence. RPTPmu immunoreactivity was found almost exclusively within vascular endothelial cells. RPTPmu was more abundant in the arterial tree than in the venous circulation. This pattern of expression was opposite to that of the von Willebrand factor and demonstrated a lack of difference in expression of VE-cadherin. RPTPmu was undetectable in the endocardium. In agreement with previous work on nonendothelial cell lines, RPTPmu was exclusively at the lateral aspects of endothelial cells in vivo and at cell-cell contacts as well as ex vivo in two- or three-dimensional endothelial cell cultures, and expression levels were upregulated by cell density. RPTPmu was detected in few other cells: bronchial and biliary epithelia and cardiocytes (intercalated discs). Our results identify RPTPmu as a new marker of endothelial cell heterogeneity and suggest a possible role in endothelial-specific functions, involving cell-cell contact.
PMID: 10094839
ISSN: 0014-4827
CID: 1365602
Regulation of early events in integrin signaling by protein tyrosine phosphatase SHP-2
Oh, E S; Gu, H; Saxton, T M; Timms, J F; Hausdorff, S; Frevert, E U; Kahn, B B; Pawson, T; Neel, B G; Thomas, S M
The nontransmembrane protein tyrosine phosphatase SHP-2 plays a critical role in growth factor and cytokine signaling pathways. Previous studies revealed that a fraction of SHP-2 moves to focal contacts upon integrin engagement and that SHP-2 binds to SHP substrate 1 (SHPS-1)/SIRP-1alpha, a transmembrane glycoprotein with adhesion molecule characteristics (Y. Fujioka et al., Mol. Cell. Biol. 16:6887-6899, 1996; M. Tsuda et al., J. Biol. Chem. 273:13223-13229). Therefore, we asked whether SHP2-SHPS-1 complexes participate in integrin signaling. SHPS-1 tyrosyl phosphorylation increased upon plating of murine fibroblasts onto specific extracellular matrices. Both in vitro and in vivo studies indicate that SHPS-1 tyrosyl phosphorylation is catalyzed by Src family protein tyrosine kinases (PTKs). Overexpression of SHPS-1 in 293 cells potentiated integrin-induced mitogen-activated protein kinase (MAPK) activation, and potentiation required functional SHP-2. To further explore the role of SHP-2 in integrin signaling, we analyzed the responses of SHP-2 exon 3(-/-) and wild-type cell lines to being plated on fibronectin. Integrin-induced activation of Src family PTKs, tyrosyl phosphorylation of several focal adhesion proteins, MAPK activation, and the ability to spread on fibronectin were defective in SHP-2 mutant fibroblasts but were restored upon SHP-2 expression. Our data suggest a positive-feedback model in which, upon integrin engagement, basal levels of c-Src activity catalyze the tyrosyl phosphorylation of SHPS-1, thereby recruiting SHP-2 to the plasma membrane, where, perhaps by further activating Src PTKs, SHP-2 transduces positive signals for downstream events such as MAPK activation and cell shape changes.
PMCID:84114
PMID: 10082587
ISSN: 0270-7306
CID: 1365612