Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:nwb2

Total Results:

387


Protease-activated receptors in inflammation, neuronal signaling and pain

Vergnolle, N; Wallace, J L; Bunnett, N W; Hollenberg, M D
The ability of proteases to regulate cell function via protease-activated receptors (PARs) has led to new insights about the potential physiological functions of these enzymes. Several studies suggest that PARs play roles in both inflammation and tissue repair, depending on the cellular environment in which they act. The recent detection of PARs on peripheral and central neurons suggests that neuronal PARs might be involved not only in neurogenic inflammation and neurodegenerative processes, but also in nociception. Thus, the list of potential roles for PARs has lengthened considerably and their physiological course of action might be much broader than initially anticipated.
PMID: 11239578
ISSN: 0165-6147
CID: 4156572

Apical and basolateral EGF receptors regulate gastric mucosal paracellular permeability

Chen, M C; Goliger, J; Bunnett, N; Soll, A H
Previous studies found that monolayers formed from canine oxyntic epithelial cells in primary culture displayed remarkable resistance to apical acidification and both mitogenic and migratory responses to epidermal growth factor (EGF) treatment. In our present studies, we found that EGF increased transepithelial resistance (TER) but not short-circuit current in these monolayers. Parallel effects of EGF on decreasing mannitol flux and increasing TER implicate direct regulation of paracellular permeability. EGF acting at either apical and basolateral receptors rapidly increased TER, but the apical response was sustained whereas the basolateral response was transient. (125)I-labeled EGF binding revealed specific apical binding, but receptor numbers were 25-fold lower than on the basolateral surface. Both apical and basolateral EGF activated tyrosine phosphorylation of EGF receptors (EGFR), beta-catenin, and cellular substrate as evident on confocal microscopy. Although apical EGF activated a lesser degree of receptor autophosphorylation than basolateral EGF, phosphorylation of beta-catenin was equally prominent with apical and basolateral receptor activation. Together, these findings indicate that functional apical and basolateral EGFR exist on primary canine gastric epithelial cells and that these receptors regulate paracellular permeability. The sustained effect of apical EGFR activation and prominent phosphorylation of beta-catenin suggest that apical EGFR may play a key role in this regulation.
PMID: 11208549
ISSN: 0193-1857
CID: 4159242

Neutral endopeptidase terminates substance P-induced inflammation in allergic contact dermatitis

Scholzen, T E; Steinhoff, M; Bonaccorsi, P; Klein, R; Amadesi, S; Geppetti, P; Lu, B; Gerard, N P; Olerud, J E; Luger, T A; Bunnett, N W; Grady, E F; Armstrong, C A; Ansel, J C
Sensory nerve-derived neuropeptides such as substance P demonstrate a number of proinflammatory bioactivities, but less is known about their role in inflammatory skin disease. The cell surface metalloprotease neutral endopeptidase (NEP) is the principal proteolytic substance P-degrading enzyme. This study tests the hypothesis that the absence of NEP results in dysregulated inflammatory skin responses. The effector phase of allergic contact dermatitis (ACD) responses was examined in NEP(-/-) knockout and NEP(+/+) wild-type mice and compared with the irritant contact dermatitis response in these animals. NEP was found to be normally immunolocalized in epidermal keratinocytes and dermal blood vessels. The ACD ear swelling response was 2.5-fold higher in animals lacking NEP and was accompanied by a significant increase in plasma extravasation and infiltration of inflammatory leukocytes. The augmented ACD response in NEP(-/-) animals was abrogated by either administration of a neurokinin receptor 1 antagonist or by repeated pretreatment with topical capsaicin. Similar to NEP(-/-) mice, the acute inhibition of NEP in NEP(+/+) animals resulted in an augmented ACD response. In contrast to the ACD responses, little differences were observed in the irritant contact dermatitis response of NEP(-/-) compared with NEP(+/+) animals after epicutaneous application of the skin irritants croton oil or SDS. Thus, these results indicate that NEP and cutaneous neuropeptides have a significant role in the pathogenesis of ACD.
PMID: 11145711
ISSN: 0022-1767
CID: 4156542

Characterization of an antibody to the human melatonin mt1 receptor

Williams, L M; Drew, J E; Bunnett, N W; Grady, E; Barrett, P; Abramovich, D R; Morris, A; Slater, D
Melatonin acts via high affinity, G-protein coupled, seven transmembrane domain receptors. To precisely localize these receptors, antibodies were raised in chickens against a 15 amino acid fragment at the intracellular C-terminal region of the human melatonin receptor subtype mt1 (DSSNDVADRVKWKPS, mt(1338-352)). A chimeric form of the receptor with a hydrophilic Flag peptide (DYKDDDDK) in sequence with the extracellular N-terminus (Flag-mt1) was generated by polymerase chain reaction and expressed in mammalian cell lines. An IgY antibody (Y31), which gave high antibody titres by enzyme-linked immunosorbent assay, was used to localize Flag-mt1 in stably transfected cells by immunofluoresence. Flag-mt1 localization with Y31 was identical to that obtained with the M5 antibody directed against the Flag epitope and was mainly localized to the Golgi apparatus with some staining at the cell surface. No staining was seen in untransfected cells with either antibody. Y31 staining was abolished using antibody preabsorbed with peptide antigen. Y31 immunofluorescence in fetal human kidney sections was restricted to nephrogenic regions and matched that of 2-((125)I)iodomelatonin binding and mt1 gene expression by in situ hybridization. Y31 was used to immunoprecipitate biotinylated membrane proteins from Flag-mt1 stably transfected and untransfected CHO cells. Western blotting of immunoprecipitated proteins revealed two major bands specific to stably transfected cells, one at 63 kDa and one at 86 kDa. The first band almost certainly corresponds to the glycosylated form of Flag-mt1 and the second band to receptor dimers. Thus, Y31 antibody is suitable for use in detecting the human mt1 receptor subtype in tissues and in transfected cells.
PMID: 11123519
ISSN: 0953-8194
CID: 4156532

Neural regulation of endothelial cell-mediated inflammation

Lindsey, K Q; Caughman, S W; Olerud, J E; Bunnett, N W; Armstrong, C A; Ansel, J C
There is increasing evidence that the cutaneous neurosensory system can directly modulate inflammatory responses in the skin by the release of neuropeptides such as substance P (SP). Dermal microvascular endothelial cell (DMEC) cellular adhesion molecule (CAM) expression plays a key role in directing leukocyte trafficking during cutaneous inflammatory responses. In recent studies, our laboratory examined the direct effect of SP on DMEC CAM expression and function in vitro and in vivo. Our studies indicate that DMEC express high affinity functional receptors for SP. After exposure to SP, DMEC expressed significant levels of both intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), which was accompanied by increased binding to leukocytes expressing the appropriate integrin counter receptors for these CAM. We then determined the in vivo effect of released neuropeptides on DMEC CAM expression. Our results indicate that the topical cutaneous application of the neuropeptide-releasing agent capsaicin resulted in increased ICAM-1 and VCAM-1 immunostaining of microvascular cells in the skin of human volunteers. Little is known regarding the cellular regulatory events by which SP modulates DMEC CAM expression. Our studies indicate that SP-induced cellular Ca+2 signals led to the activation of the NF-kappaB pathway, resulting in nuclear translocation of p65/p50 heterodimers that bind to high-affinity tandem kappaB sites on the VCAM-1 promoter, whereas SP activation induced NF-AT activation and ICAM-1 DNA binding. Thus, these studies further support the role of the cutaneous neurologic system in modulating inflammatory processes in the skin.
PMID: 11147679
ISSN: 1087-0024
CID: 4156552

Intestinal type 2 proteinase-activated receptors: expression in opioid-sensitive secretomotor neural circuits that mediate epithelial ion transport

Green, B T; Bunnett, N W; Kulkarni-Narla, A; Steinhoff, M; Brown, D R
Trypsin and mast cell tryptase cleave within the extracellular N terminus of proteinase-activated receptor-2 (PAR-2), exposing a tethered ligand (SLIGRL) that binds and activates the cleaved receptor. We examined the neuronal expression of PAR-2 and its role in intestinal ion transport. Short-circuit current elevations in response to trypsin or the receptor-activating peptide SLIGRL-NH(2) were measured in sheets of mucosa-submucosa from porcine ileum. SLIGRL-NH(2) or trypsin rapidly elevated short-circuit current after their contraluminal application with respective 50% effective concentrations of 184 and 769 nM. Their actions were attenuated after contraluminal administration of the neuronal conduction blocker saxitoxin (0.1 microM); the cyclooxygenase inhibitor indomethacin (10 microM); or the Na(+)/K(+)/Cl(-) cotransport inhibitor furosemide (10 microM), but not by atropine (0.1 microM), a muscarinic cholinergic antagonist. In addition, soybean trypsin inhibitor (5 microgram/ml) reduced mucosal responses to trypsin. The delta-opioid agonist [D-Pen(2,5)]-enkephalin (0.1 microM) inhibited trypsin action, an effect that was prevented by naltrindole (0.1 microM), a delta-opioid antagonist. PAR-2 immunofluorescence was localized in the mucosa using a receptor-specific antibody. PAR-2-like immunoreactivity was detected in myenteric and submucosal neurons, nerve fibers innervating ileal smooth muscle and mucosa, and in enteroendocrine cells. Some neurons coexpressed PAR-2- and choline acetyltransferase-like immunoreactivity. These results indicate that PAR-2 is expressed on cholinergic and noncholinergic submucosal neurons in porcine ileum. PAR-2 agonists stimulate active anion secretion by a neurogenic mechanism that is modulated by prostanoids and opioids. These receptors may have a potentially important role in intestinal neuroimmunomodulation.
PMID: 10992008
ISSN: 0022-3565
CID: 4156492

NK-1 receptor desensitization and neutral endopeptidase terminate SP-induced pancreatic plasma extravasation

Maa, J; Grady, E F; Kim, E H; Yoshimi, S K; Hutter, M M; Bunnett, N W; Kirkwood, K S
Substance P (SP) induces plasma extravasation and neutrophil infiltration by activating the neurokinin-1 receptor (NK1-R). We characterized the mechanisms regulating this response in the rat pancreas. Anesthetized rats were continuously infused with SP, and plasma extravasation was quantified using Evans blue (EB) dye. Continuous infusion of SP (8 nmol. kg(-1). h(-1)) resulted in a threshold increase in EB at 15 min, a peak effect at 30 min (150% increase), and a return to baseline by 60 min. The NK1-R antagonist CP-96,345 blocked SP-induced plasma extravasation. After 60 min, the NK1-R was desensitized to agonist challenge. Resensitization was first detected at 20 min and increased until full recovery was seen at 30 min. Inhibition of the cell-surface protease neutral endopeptidase (NEP) by phosphoramidon potentiated the effect of exogenous SP; therefore endogenous NEP attenuates SP-induced plasma extravasation. Thus the continuous infusion of SP stimulates plasma extravasation in the rat pancreas via activation of the NK1-R, and these effects are terminated by both desensitization of the NK1-R and the cell-surface protease NEP.
PMID: 11005759
ISSN: 0193-1857
CID: 4156512

Evidence that PAR-1 and PAR-2 mediate prostanoid-dependent contraction in isolated guinea-pig gallbladder

Tognetto, M; Trevisani, M; Maggiore, B; Navarra, G; Turini, A; Guerrini, R; Bunnett, N W; Geppetti, P; Harrison, S
We have investigated the ability of protease-activated receptor-1 (PAR-1), PAR-2, PAR-3 and PAR-4 agonists to induce contractile responses in isolated guinea-pig gallbladder. Thrombin, trypsin, mouse PAR-1 activating (SFLLRN-NH(2)) peptide, and mouse PAR-2 activating (SLIGRL-NH(2)) and human PAR-2 activating (SLIGKV-NH(2)) peptides produced a concentration-dependent contractile response. Mouse PAR-4 activating (GYPGKF-NH(2)) peptide, the mouse PAR-1 reverse (NRLLFS-NH(2)) peptide, the mouse PAR-2 reverse (LRGILS-NH(2)) and human PAR-2 reverse (VKGILS-NH(2)) peptides caused negligible contractile responses at the highest concentrations tested. An additive effect was observed following the contractile response induced by either trypsin or thrombin, with the addition of a different PAR agonist (SFLLRN-NH(2) and SLIGRL-NH(2), respectively). Desensitization to PAR-2 activating peptide attenuated the response to trypsin but failed to attenuate the response to PAR-1 agonists, and conversely desensitization to PAR-1 attenuated the response to thrombin but failed to alter contractile responses to PAR-2 agonists. The contractile responses produced by thrombin, trypsin, SFLLRN-NH(2) and SLIGRL-NH(2) were markedly reduced in the presence of the cyclo-oxygenase inhibitor, indomethacin, whilst the small contractile response produced by NRLLFS-NH(2) and LRGILS-NH(2) were insensitive to indomethacin. The contractile responses to thrombin, trypsin, SFLLRN-NH(2) and SLIGRL-NH(2) were unaffected by the presence of: the non-selective muscarinic antagonist, atropine; the nitric oxide synthase inhibitor, L-NAME; the sodium channel blocker, tetrodotoxin; the combination of selective tachykinin NK(1) and NK(2) receptor antagonists, (S)-1-[2-[3-(3,4-dichlorphenyl)-1 (3-isopropoxyphenylacetyl) piperidin-3-yl] ethyl]-4-phenyl-1 azaniabicyclo [2.2.2] octane chloride (SR140333) and (S)-N-methyl-N-[4-acetylamino-4-phenylpiperidino-2-(3, 4-dichlorophenyl)-butyl] benzamide (SR48968), respectively. The results indicate that PAR-1 and PAR-2 activation causes contractile responses in the guinea-pig gallbladder, an effect that is mediated principally by prostanoid release, and is independent of neural mechanisms.
PMCID:1572377
PMID: 11030717
ISSN: 0007-1188
CID: 4156522

The proliferative and antiapoptotic effects of substance P are facilitated by formation of a beta -arrestin-dependent scaffolding complex

DeFea, K A; Vaughn, Z D; O'Bryan, E M; Nishijima, D; Déry, O; Bunnett, N W
A requirement for scaffolding complexes containing internalized G protein-coupled receptors and beta-arrestins in the activation and subcellular localization of extracellular signal-regulated kinases 1 and 2 (ERK1/2) has recently been proposed. However, the composition of these complexes and the importance of this requirement for function of ERK1/2 appear to differ between receptors. Here we report that substance P (SP) activation of neurokinin-1 receptor (NK1R) stimulates the formation of a scaffolding complex comprising internalized receptor, beta-arrestin, src, and ERK1/2 (detected by gel filtration, immunoprecipitation, and immunofluorescence). Inhibition of complex formation, by expression of dominant-negative beta-arrestin or a truncated NK1R that fails to interact with beta-arrestin, inhibits both SP-stimulated endocytosis of the NK1R and activation of ERK1/2, which is required for the proliferative and antiapoptotic effects of SP. Thus, formation of a beta-arrestin-containing complex facilitates the proliferative and antiapoptotic effects of SP, and these effects of SP could be diminished in cells expressing truncated NK1R corresponding to a naturally occurring variant.
PMCID:27152
PMID: 10995467
ISSN: 0027-8424
CID: 4156502

Substance P is a determinant of lethality in diet-induced hemorrhagic pancreatitis in mice

Maa, J; Grady, E F; Yoshimi, S K; Drasin, T E; Kim, E H; Hutter, M M; Bunnett, N W; Kirkwood, K S
BACKGROUND:The neuropeptide substance P (SP) induces plasma extravasation and neutrophil infiltration by activating the neurokinin 1-receptor (NK1-R). SP-induced neurogenic inflammation is terminated by the cell surface enzyme neutral endopeptidase (NEP), which degrades SP. We determined whether genetic deletion of the NK1-R reduces mortality and, conversely, whether genetic deletion of NEP increases mortality in a lethal model of hemorrhagic pancreatitis. METHODS:Necrotizing pancreatitis was induced by feeding mice a diet deficient in choline and supplemented with ethionine. We determined the length of survival, the severity of pancreatitis (by measuring the neutrophil enzyme myeloperoxidase [MPO] and by histologic evaluation), and the severity of pancreatitis-associated lung injury (lung MPO and histology) in NK1-R (+/+)/(-/-) and NEP (+/+)/(-/-) mice. RESULTS:Genetic deletion of the NK1-R significantly improved survival (100% vs 8% at 120 hours, P <.001) and reduced pancreatic MPO and acinar cell necrosis. Conversely, genetic deletion of NEP significantly worsened survival (0% vs 90% at 120 hours, P <.001) and exacerbated pancreatic MPO and pancreatitis-associated lung injury. CONCLUSIONS:Substance P is an important determinant of lethality in this model of necrotizing pancreatitis. Defects in NEP expression could lead to uncontrolled inflammation.
PMID: 10922997
ISSN: 0039-6060
CID: 4156472