Searched for: in-biosketch:yes
person:neelb01
Integration of growth factor, extracellular matrix, and retinoid signals during bronchial epithelial cell differentiation
Moghal, N; Neel, B G
Epithelial cell differentiation is regulated by specific combinations of growth factors, hormones, and extracellular matrix (ECM). How these divergent signals are integrated is largely unknown. We used primary cultures of normal human bronchial epithelial cells (NHBEs) to investigate mechanisms of signal integration. In defined, serum-free media, NHBEs undergo mucosecretory differentiation only when grown in the presence of retinoids and on the appropriate substratum (collagen gels). We identified the retinoic acid receptor beta (RARbeta) gene as an early marker of NHBE differentiation. In contrast to immortalized cell lines, in NHBEs strong retinoid-induced RARbeta transcription occurs only when cells are grown on collagen gels, and it requires new protein synthesis and a cis-acting element that maps outside the known RARbeta promoter elements. NHBEs grown on collagen gels exhibit reduced epidermal growth factor (EGF)-induced Raf, MEK, and mitogen-activated protein kinase (MAPK) activity. This correlates with a specific inability to achieve high levels of p66(SHC) tyrosyl phosphorylation and association of p66(SHC) with GRB2, despite high levels of EGF receptor (EGFR) autophosphorylation. Notably, inhibition of EGFR or MEK/MAPK activation replaces the ECM requirement for RARbeta induction. Our results strongly suggest that a key mechanism by which specific ECMs facilitate retinoid-induced mucosecretory differentiation of NHBEs is by restricting the level of EGFR-dependent MEK/MAPK activation evoked by autocrine and/or paracrine EGFR ligands.
PMCID:109251
PMID: 9774681
ISSN: 0270-7306
CID: 1365622
The B-cell transmembrane protein CD72 binds to and is an in vivo substrate of the protein tyrosine phosphatase SHP-1
Wu, Y; Nadler, M J; Brennan, L A; Gish, G D; Timms, J F; Fusaki, N; Jongstra-Bilen, J; Tada, N; Pawson, T; Wither, J; Neel, B G; Hozumi, N
BACKGROUND: Signals from the B-cell antigen receptor (BCR) help to determine B-cell fate, directing either proliferation, differentiation, or growth arrest/apoptosis. The protein tyrosine phosphatase SHP-1 is known to regulate the strength of BCR signaling. Although the B-cell co-receptor CD22 binds SHP-1, B cells in CD22-deficient mice are much less severely affected than those in SHP-1-deficient mice, suggesting that SHP-1 may also regulate B-cell signaling by affecting other signaling molecules. Moreover, direct substrates of SHP-1 have not been identified in any B-cell signaling pathway. RESULTS: We identified the B-cell transmembrane protein CD72 as a new SHP-1 binding protein and as an in vivo substrate of SHP-1 in B cells. We also defined the binding sites for SHP-1 and the adaptor protein Grb2 on CD72. Tyrosine phosphorylation of CD72 correlated strongly with BCR-induced growth arrest/apoptosis in B-cell lines and in primary B cells. Preligation of CD72 attenuated BCR-induced growth arrest/death signals in immature and mature B cells or B-cell lines, whereas preligation of CD22 enhanced BCR-induced growth arrest/apoptosis. CONCLUSIONS: We have identified CD72 as the first clear in vivo substrate of SHP-1 in B cells. Our results suggest that tyrosine-phosphorylated CD72 may transmit signals for BCR-induced apoptosis. By dephosphorylation CD72. SHP-1 may have a positive role in B-cell signaling. These results have potentially important implications for the involvement of CD72 and SHP-1 in B-cell development and autoimmunity.
PMID: 9740800
ISSN: 0960-9822
CID: 1365632
Regulation of B cell signal transduction by SH2-containing protein-tyrosine phosphatases
Siminovitch, K A; Neel, B G
Tyrosyl phosphorylation plays a key role in B lymphocyte signaling. The mechanisms by which protein tyrosine kinases (PTKs) regulate signaling pathways in B cells have been investigated extensively. More recently, attention has turned to the protein--tryosine phosphatases (PTPs), particularly those containing SH2 domains. SHP-1 has been shown to be a critical regulator of antigen receptor signaling, acting, at least in part, via inhibitory co-receptors containing SHP-1 binding sites. These studies have been aided considerably by the analysis of mice carrying naturally-arising mutations in the SHP-1 gene as well as mice bearing targeted mutations in other components of Be cells signaling pathways. The function of SHP-2 in B cells in less clear, although studies in other cell systems suggests that it may play a signal-enhancing role.
PMID: 9695189
ISSN: 1044-5323
CID: 1365642
Identification of major binding proteins and substrates for the SH2-containing protein tyrosine phosphatase SHP-1 in macrophages
Timms, J F; Carlberg, K; Gu, H; Chen, H; Kamatkar, S; Nadler, M J; Rohrschneider, L R; Neel, B G
The protein tyrosine phosphatase SHP-1 is a critical regulator of macrophage biology, but its detailed mechanism of action remains largely undefined. SHP-1 associates with a 130-kDa tyrosyl-phosphorylated species (P130) in macrophages, suggesting that P130 might be an SHP-1 regulator and/or substrate. Here we show that P130 consists of two transmembrane glycoproteins, which we identify as PIR-B/p91A and the signal-regulatory protein (SIRP) family member BIT. These proteins also form separate complexes with SHP-2. BIT, but not PIR-B, is in a complex with the colony-stimulating factor 1 receptor (CSF-1R), suggesting that BIT may direct SHP-1 to the CSF-1R. BIT and PIR-B bind preferentially to substrate-trapping mutants of SHP-1 and are hyperphosphorylated in macrophages from motheaten viable mice, which express catalytically impaired forms of SHP-1, indicating that these proteins are SHP-1 substrates. However, BIT and PIR-B are hypophosphorylated in motheaten macrophages, which completely lack SHP-1 expression. These data suggest a model in which SHP-1 dephosphorylates specific sites on BIT and PIR-B while protecting other sites from dephosphorylation via its SH2 domains. Finally, BIT and PIR-B associate with two tyrosyl phosphoproteins and a tyrosine kinase activity. Tyrosyl phosphorylation of these proteins and the level of the associated kinase activity are increased in the absence of SHP-1. Our data suggest that BIT and PIR-B recruit multiple signaling molecules to receptor complexes, where they are regulated by SHP-1 and/or SHP-2.
PMCID:108968
PMID: 9632768
ISSN: 0270-7306
CID: 1365652
Revealing mechanisms for SH2 domain mediated regulation of the protein tyrosine phosphatase SHP-2
Barford, D; Neel, B G
The crystal structure of the protein tyrosine phosphatase SHP-2 reveals the mechanism of auto-inhibition of phosphatase activity by its SH2 domains. Phosphotyrosine peptide stimulation of the phosphatase activity, resulting from peptide binding to the N-terminal SH2 domain, is linked to conformational changes within the protein, including an unprecedented allosteric transition of the N-terminal SH2 domain.
PMID: 9551546
ISSN: 0969-2126
CID: 1365662
Identification of a domain in the beta subunit of the type I interferon (IFN) receptor that exhibits a negative regulatory effect in the growth inhibitory action of type I IFNs
Platanias, L C; Domanski, P; Nadeau, O W; Yi, T; Uddin, S; Fish, E; Neel, B G; Colamonici, O R
Expression of human alpha and long form of the beta (betaL) subunits of type I interferon receptor (IFN-R) in mouse cells is sufficient to activate the Jak-Stat pathway and to elicit an antiviral state in response to human IFNalpha2 and IFNbeta. We demonstrate herein, however, that these cells respond to the antiproliferative effects of murine IFNalphabeta but not human type I IFNs. These results suggest that an unknown species-specific component is required for the antiproliferative effect of human type I IFNs. The absence of this component can be complemented by expressing the human betaL chain truncated at amino acid 346. Thus, the distal region of betaL appears to function as a negative regulator of the growth inhibitory effects of type I IFNs. Further studies looking for possible targets of the betaL regulatory domain demonstrated that this region associates with a tyrosine phosphatase. These results suggest that a protein associated with the negative regulatory domain of betaL, likely a tyrosine phosphatase, plays a role in regulating the growth inhibitory effects of human type I IFNs.
PMID: 9488684
ISSN: 0021-9258
CID: 1365672
Genetic analysis of protein tyrosine phosphatases
Van Vactor, D; O'Reilly, A M; Neel, B G
Genetic analysis has enhanced our understanding of the biological roles of many protein tyrosine kinases (PTKs). More recently, studies utilizing both spontaneous mutants and mutants induced by homologous recombination techniques have begun to yield key insights into the role of specific protein tyrosine phosphatases (PTPs) and to suggest how PTKs and PTPs interact. Specific PTPs in Saccharomyces cerevesiae and Schizomyces pombe regulate MAP kinase pathways. Several Drosophila receptor PTPs control axonal targeting pathways, whereas the non-receptor PTP Corkscrew (Csw), plays an essential positive signaling role in multiple developmental pathways directed by receptor PTKs. The vertebrate homolog of Csw, SHP-2, also is required for growth factor signaling and normal development. Finally, very recent studies of other mammalian PTPs suggest that they have critical roles in processes as diverse as hematopoiesis and liver and pituitary development.
PMID: 9529614
ISSN: 0959-437x
CID: 1365682
Structural determinants of SHP-2 function and specificity in Xenopus mesoderm induction
O'Reilly, A M; Neel, B G
SHP-2 is a positive component of many receptor tyrosine kinase signaling pathways. The related protein-tyrosine phosphatase (PTP) SHP-1 usually acts as a negative regulator. The precise domains utilized by SHP-2 to transmit positive signals in vivo and the basis for specificity between SHP-1 and SHP-2 are not clear. In Xenopus, SHP-2 is required for mesoderm induction and completion of gastrulation. We investigated the effects of SHP-2 mutants and SHP-2/SHP-1 chimeras on basic fibroblast growth factor-induced mesoderm induction. Both SH2 domains and the PTP domain are required for normal SHP-2 function in this pathway. The N-terminal SH2 domain is absolutely required, whereas the C-terminal SH2 contributes to wild-type function. The C-terminal tyrosyl phosphorylation sites and proline-rich region are dispensable, arguing against adapter models of SHP-2 function. Although the SH2 domains contribute to SHP-2 specificity, studies of SHP chimeras reveal that substantial specificity resides in the PTP domain. Thus, PTP domains exhibit biologically relevant specificity in vivo, and noncatalytic and catalytic domains of PTPs contribute to specificity in a combinatorial fashion.
PMCID:121471
PMID: 9418864
ISSN: 0270-7306
CID: 1365692
B cell antigen receptor-evoked calcium influx is enhanced in CD22-deficient B cell lines
Nadler, M J; McLean, P A; Neel, B G; Wortis, H H
CD22 is a B cell membrane glycoprotein that, upon Ag receptor engagement, becomes rapidly tyrosyl phosphorylated and associates with several signaling molecules including Lyn, Syk, PLCgamma1, and the protein-tyrosine phosphatase, SHP-1. Two allelic forms of murine CD22 exist: CD22.1 is expressed in strains such as NZB and DBA/2, whereas CD22.2 is expressed in BALB/c and most other strains. WEHI-231 cells, which derive from a (BALB/c x NZB)F1 mouse, express one copy of each allele. Previous studies have proposed both positive and negative functions for CD22. We explored the role of CD22 in surface IgM Ag receptor signal transduction by examining signaling in three clonally independent WEHI-231 variants that have lost expression of the CD22.2 allele. This experimental design allowed us to assess the signaling functions of CD22 independent of its developmental role. These variants, which exhibit a 50% reduction of total surface CD22, are hyper-responsive to Ag receptor stimulation: several cellular proteins are hyperphosphorylated on tyrosyl residues and surface IgM-mediated calcium flux is markedly increased. Interestingly, the increased calcium response observed in CD22-deficient cells is due largely to enhanced calcium influx. Reconstitution of CD22 expression reduces these changes. The SHP-1/CD22 association is reduced in CD22-deficient cell lines and is restored by re-expression of CD22. Our results demonstrate that CD22 is a cell autonomous negative regulator of B cell Ag receptor signaling, and suggest that it regulates calcium entry via a mechanism downstream from or independent of calcium release from intracellular stores.
PMID: 9379018
ISSN: 0022-1767
CID: 1365702
Protein-tyrosine phosphatase SHP-1 is dispensable for FcgammaRIIB-mediated inhibition of B cell antigen receptor activation
Nadler, M J; Chen, B; Anderson, J S; Wortis, H H; Neel, B G
The inhibitory Fc receptor, FcgammaRIIB, provides a signal that aborts B cell antigen receptor activation, blocking extracellular calcium influx. Because the protein-tyrosine phosphatase SHP-1 binds tyrosyl phosphorylated FcgammaRIIB and FcgammaRIIB-mediated inhibition is defective in motheaten (me/me) mice, which do not express SHP-1, it was proposed that SHP-1 mediates FcgammaRIIB signaling in B cells (D'Ambrosio, D., Hippen, K. L., Minskoff, S. A., Mellman, I., Pani, G., Siminovitch, K. A., and Cambier, J. C. (1995) Science 268, 293-297). However, SHP-1 is dispensable for FcgammaRIIB-mediated inhibition of FcepsilonRI signaling in mast cells (Ono, M., Bolland, S., Tempst, P., and Ravetch, J. V. (1996) Nature 383, 263-266), prompting us to re-examine the role of SHP-1 in FcgammaRIIB signaling in B cells. We generated immortalized sIgM+, FcgammaRIIB+ cell lines from me/me mice and normal littermates. Co-ligation of FcgammaRIIB and the sIgM antigen receptor inhibits calcium influx in both cell lines. Inhibition is reversed by preincubation with anti-FcgammaRIIB antibodies, indicating that it is mediated by FcgammaRIIB. The inositol 5' phosphatase SHIP is recruited to tyrosyl-phosphorylated FcgammaRIIB in both cell lines. FcgammaRIIB-mediated CD19 dephosphorylation also occurs in the presence or the absence of SHP-1. Our results establish that SHP-1 is dispensable for FcgammaRIIB-mediated inhibition of sIgM antigen receptor signaling.
PMID: 9242674
ISSN: 0021-9258
CID: 1365712