Searched for: in-biosketch:yes
person:nwb2
NK-1 receptor desensitization and neutral endopeptidase terminate SP-induced pancreatic plasma extravasation
Maa, J; Grady, E F; Kim, E H; Yoshimi, S K; Hutter, M M; Bunnett, N W; Kirkwood, K S
Substance P (SP) induces plasma extravasation and neutrophil infiltration by activating the neurokinin-1 receptor (NK1-R). We characterized the mechanisms regulating this response in the rat pancreas. Anesthetized rats were continuously infused with SP, and plasma extravasation was quantified using Evans blue (EB) dye. Continuous infusion of SP (8 nmol. kg(-1). h(-1)) resulted in a threshold increase in EB at 15 min, a peak effect at 30 min (150% increase), and a return to baseline by 60 min. The NK1-R antagonist CP-96,345 blocked SP-induced plasma extravasation. After 60 min, the NK1-R was desensitized to agonist challenge. Resensitization was first detected at 20 min and increased until full recovery was seen at 30 min. Inhibition of the cell-surface protease neutral endopeptidase (NEP) by phosphoramidon potentiated the effect of exogenous SP; therefore endogenous NEP attenuates SP-induced plasma extravasation. Thus the continuous infusion of SP stimulates plasma extravasation in the rat pancreas via activation of the NK1-R, and these effects are terminated by both desensitization of the NK1-R and the cell-surface protease NEP.
PMID: 11005759
ISSN: 0193-1857
CID: 4156512
Evidence that PAR-1 and PAR-2 mediate prostanoid-dependent contraction in isolated guinea-pig gallbladder
Tognetto, M; Trevisani, M; Maggiore, B; Navarra, G; Turini, A; Guerrini, R; Bunnett, N W; Geppetti, P; Harrison, S
We have investigated the ability of protease-activated receptor-1 (PAR-1), PAR-2, PAR-3 and PAR-4 agonists to induce contractile responses in isolated guinea-pig gallbladder. Thrombin, trypsin, mouse PAR-1 activating (SFLLRN-NH(2)) peptide, and mouse PAR-2 activating (SLIGRL-NH(2)) and human PAR-2 activating (SLIGKV-NH(2)) peptides produced a concentration-dependent contractile response. Mouse PAR-4 activating (GYPGKF-NH(2)) peptide, the mouse PAR-1 reverse (NRLLFS-NH(2)) peptide, the mouse PAR-2 reverse (LRGILS-NH(2)) and human PAR-2 reverse (VKGILS-NH(2)) peptides caused negligible contractile responses at the highest concentrations tested. An additive effect was observed following the contractile response induced by either trypsin or thrombin, with the addition of a different PAR agonist (SFLLRN-NH(2) and SLIGRL-NH(2), respectively). Desensitization to PAR-2 activating peptide attenuated the response to trypsin but failed to attenuate the response to PAR-1 agonists, and conversely desensitization to PAR-1 attenuated the response to thrombin but failed to alter contractile responses to PAR-2 agonists. The contractile responses produced by thrombin, trypsin, SFLLRN-NH(2) and SLIGRL-NH(2) were markedly reduced in the presence of the cyclo-oxygenase inhibitor, indomethacin, whilst the small contractile response produced by NRLLFS-NH(2) and LRGILS-NH(2) were insensitive to indomethacin. The contractile responses to thrombin, trypsin, SFLLRN-NH(2) and SLIGRL-NH(2) were unaffected by the presence of: the non-selective muscarinic antagonist, atropine; the nitric oxide synthase inhibitor, L-NAME; the sodium channel blocker, tetrodotoxin; the combination of selective tachykinin NK(1) and NK(2) receptor antagonists, (S)-1-[2-[3-(3,4-dichlorphenyl)-1 (3-isopropoxyphenylacetyl) piperidin-3-yl] ethyl]-4-phenyl-1 azaniabicyclo [2.2.2] octane chloride (SR140333) and (S)-N-methyl-N-[4-acetylamino-4-phenylpiperidino-2-(3, 4-dichlorophenyl)-butyl] benzamide (SR48968), respectively. The results indicate that PAR-1 and PAR-2 activation causes contractile responses in the guinea-pig gallbladder, an effect that is mediated principally by prostanoid release, and is independent of neural mechanisms.
PMCID:1572377
PMID: 11030717
ISSN: 0007-1188
CID: 4156522
The proliferative and antiapoptotic effects of substance P are facilitated by formation of a beta -arrestin-dependent scaffolding complex
DeFea, K A; Vaughn, Z D; O'Bryan, E M; Nishijima, D; Déry, O; Bunnett, N W
A requirement for scaffolding complexes containing internalized G protein-coupled receptors and beta-arrestins in the activation and subcellular localization of extracellular signal-regulated kinases 1 and 2 (ERK1/2) has recently been proposed. However, the composition of these complexes and the importance of this requirement for function of ERK1/2 appear to differ between receptors. Here we report that substance P (SP) activation of neurokinin-1 receptor (NK1R) stimulates the formation of a scaffolding complex comprising internalized receptor, beta-arrestin, src, and ERK1/2 (detected by gel filtration, immunoprecipitation, and immunofluorescence). Inhibition of complex formation, by expression of dominant-negative beta-arrestin or a truncated NK1R that fails to interact with beta-arrestin, inhibits both SP-stimulated endocytosis of the NK1R and activation of ERK1/2, which is required for the proliferative and antiapoptotic effects of SP. Thus, formation of a beta-arrestin-containing complex facilitates the proliferative and antiapoptotic effects of SP, and these effects of SP could be diminished in cells expressing truncated NK1R corresponding to a naturally occurring variant.
PMCID:27152
PMID: 10995467
ISSN: 0027-8424
CID: 4156502
Substance P is a determinant of lethality in diet-induced hemorrhagic pancreatitis in mice
Maa, J; Grady, E F; Yoshimi, S K; Drasin, T E; Kim, E H; Hutter, M M; Bunnett, N W; Kirkwood, K S
BACKGROUND:The neuropeptide substance P (SP) induces plasma extravasation and neutrophil infiltration by activating the neurokinin 1-receptor (NK1-R). SP-induced neurogenic inflammation is terminated by the cell surface enzyme neutral endopeptidase (NEP), which degrades SP. We determined whether genetic deletion of the NK1-R reduces mortality and, conversely, whether genetic deletion of NEP increases mortality in a lethal model of hemorrhagic pancreatitis. METHODS:Necrotizing pancreatitis was induced by feeding mice a diet deficient in choline and supplemented with ethionine. We determined the length of survival, the severity of pancreatitis (by measuring the neutrophil enzyme myeloperoxidase [MPO] and by histologic evaluation), and the severity of pancreatitis-associated lung injury (lung MPO and histology) in NK1-R (+/+)/(-/-) and NEP (+/+)/(-/-) mice. RESULTS:Genetic deletion of the NK1-R significantly improved survival (100% vs 8% at 120 hours, P <.001) and reduced pancreatic MPO and acinar cell necrosis. Conversely, genetic deletion of NEP significantly worsened survival (0% vs 90% at 120 hours, P <.001) and exacerbated pancreatic MPO and pancreatitis-associated lung injury. CONCLUSIONS:Substance P is an important determinant of lethality in this model of necrotizing pancreatitis. Defects in NEP expression could lead to uncontrolled inflammation.
PMID: 10922997
ISSN: 0039-6060
CID: 4156472
Neurokinin 1 receptor distribution in cholinergic neurons and targets of substance P terminals in the rat nucleus accumbens
Pickel, V M; Douglas, J; Chan, J; Gamp, P D; Bunnett, N W
Substance P (SP) is the major endogenous ligand for neurokinin 1 (NK1) receptors and, together with acetylcholine, has an important role in motivated behaviors involving the limbic shell and motor core of the nucleus accumbens (NAc). To determine the functional sites for SP activation of NK-1 receptors and potential interactions with cholinergic neurons in these regions, the authors examined the electron microscopic immunocytochemical localization either of antisera against the NK1 receptor or of the NK1 receptor and either 1) SP or 2) the vesicular acetylcholine transporter (VAchT) in rat NAc. In both the NAc shell and core, NK1 receptor labeling was localized mainly to somatic and dendritic plasma membranes and nearby endosomal organelles in aspiny neurons. In sections through the ventromedial shell that were processed for NK1/SP labeling, 46% of the NK1-immunoreactive dendrites (n = 603 dendrites) showed symmetric or appositional contacts with SP-containing terminals. These terminals and several others that formed symmetric synapses also occasionally were immunoreactive for NK1 receptors. Analysis of the shell region for NK1/VAchT labeling showed that 61% of the total immunoreactive dendrites (n = 534 dendrites) contained NK1 receptors without VAchT, 29% contained both products, and 10% contained VAchT only. Many of the labeled somata and dendrites also received synaptic contact from VAchT-containing terminals. These findings suggest that, in the NAc, NK1 receptors are recycled through endosomal compartments and play a role in modulating mainly the postsynaptic responses, but also the presynaptic release, of SP and/or inhibitory neurotransmitters onto aspiny interneurons, some of which are cholinergic.
PMID: 10870089
ISSN: 0021-9967
CID: 4156462
Substance P mediates inflammatory oedema in acute pancreatitis via activation of the neurokinin-1 receptor in rats and mice
Grady, E F; Yoshimi, S K; Maa, J; Valeroso, D; Vartanian, R K; Rahim, S; Kim, E H; Gerard, C; Gerard, N; Bunnett, N W; Kirkwood, K S
Pancreatic oedema occurs early in the development of acute pancreatitis, and the overall extent of fluid loss correlates with disease severity. The tachykinin substance P (SP) is released from sensory nerves, binds to the neurokinin-1 receptor (NK1-R) on endothelial cells and induces plasma extravasation, oedema, and neutrophil infiltration, a process termed neurogenic inflammation. We sought to determine the importance of neurogenic mechanisms in acute pancreatitis. Pancreatic plasma extravasation was measured using the intravascular tracers Evans blue and Monastral blue after administration of specific NK1-R agonists/antagonists in rats and NK1-R(+/+)/(-/-) mice. The effects of NK1-R genetic deletion/antagonism on pancreatic plasma extravasation, amylase, myeloperoxidase (MPO), and histology in cerulein-induced pancreatitis were characterized. In rats, both SP and the NK1-R selective agonist [Sar(9) Met(O(2))(11)]SP stimulated pancreatic plasma extravasation, and this response was blocked by the NK1-R antagonist CP 96,345. Selective agonists of the NK-2 or NK-3 receptors had no effect. In rats, cerulein stimulated pancreatic plasma extravasation and serum amylase. These responses were blocked by the NK1-R antagonist CP 96,345. In wildtype mice, SP induced plasma extravasation while SP had no effect in NK1-R knockout mice. In NK1-R knockout mice, the effects of cerulein on pancreatic plasma extravasation and hyperamylasemia were reduced by 60%, and pancreatic MPO by 75%, as compared to wildtype animals. Neurogenic mechanisms of inflammation are important in the development of inflammatory oedema in acute interstitial pancreatitis.
PMCID:1572103
PMID: 10821777
ISSN: 0007-1188
CID: 4156452
Presence and bronchomotor activity of protease-activated receptor-2 in guinea pig airways
Ricciardolo, F L; Steinhoff, M; Amadesi, S; Guerrini, R; Tognetto, M; Trevisani, M; Creminon, C; Bertrand, C; Bunnett, N W; Fabbri, L M; Salvadori, S; Geppetti, P
The protease activated receptor-2 (PAR-2) belongs to a family of G-protein-coupled receptors that are activated by proteolysis. Trypsin cleaves PAR-2, exposing an N-terminal tethered ligand (SLIGRL) that activates the receptor. Messenger RNA (mRNA) for PAR-2 was found in guinea pig airway tissue by reverse transcription-polymerase chain reaction, and PAR-2 was found by immunohistochemistry in airway epithelial and smooth-muscle cells. In anesthetized guinea pigs, trypsin and SLIGRL-NH(2) (given intratracheally or intravenously) caused a bronchoconstriction that was inhibited by the combination of tachykinin-NK(1) and -NK(2) receptor antagonists and was potentiated by inhibition of nitric oxide synthase (NOS). Trypsin and SLIGRL-NH(2) relaxed isolated trachea and main bronchi, and contracted intrapulmonary bronchi. Relaxation of main bronchi was abolished or reversed to contraction by removal of epithelium, administration of indomethacin, and NOS inhibition. PAR-1, PAR-3, and PAR-4 were not involved in the bronchomotor action of either trypsin or SLIGRL-NH(2), because ligands of these receptors were inactive either in vitro or in vivo, and because thrombin (a PAR-1 and PAR-3 agonist) did not show cross-desensitization with PAR-2 agonists in vivo. Thus, we have localized PAR-2 to the guinea-pig airways, and have shown that activation of PAR-2 causes multiple motor effects in these airways, including in vivo bronchoconstriction, which is in part mediated by a neural mechanism.
PMID: 10806174
ISSN: 1073-449x
CID: 4156442
beta-arrestin-dependent endocytosis of proteinase-activated receptor 2 is required for intracellular targeting of activated ERK1/2
DeFea, K A; Zalevsky, J; Thoma, M S; Déry, O; Mullins, R D; Bunnett, N W
Recently, a requirement for beta-arrestin-mediated endocytosis in the activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) by several G protein-coupled receptors (GPCRs) has been proposed. However, the importance of this requirement for function of ERK1/2 is unknown. We report that agonists of Galphaq-coupled proteinase-activated receptor 2 (PAR2) stimulate formation of a multiprotein signaling complex, as detected by gel filtration, immunoprecipitation and immunofluorescence. The complex, which contains internalized receptor, beta-arrestin, raf-1, and activated ERK, is required for ERK1/2 activation. However, ERK1/2 activity is retained in the cytosol and neither translocates to the nucleus nor causes proliferation. In contrast, a mutant PAR2 (PAR2deltaST363/6A), which is unable to interact with beta-arrestin and, thus, does not desensitize or internalize, activates ERK1/2 by a distinct pathway, and fails to promote both complex formation and cytosolic retention of the activated ERK1/2. Whereas wild-type PAR2 activates ERK1/2 by a PKC-dependent and probably a ras-independent pathway, PAR2(deltaST363/6A) appears to activate ERK1/2 by a ras-dependent pathway, resulting in increased cell proliferation. Thus, formation of a signaling complex comprising PAR2, beta-arrestin, raf-1, and activated ERK1/2 might ensure appropriate subcellular localization of PAR2-mediated ERK activity, and thereby determine the mitogenic potential of receptor agonists.
PMCID:2174299
PMID: 10725339
ISSN: 0021-9525
CID: 4156432
Agonists of proteinase-activated receptor 2 induce inflammation by a neurogenic mechanism
Steinhoff, M; Vergnolle, N; Young, S H; Tognetto, M; Amadesi, S; Ennes, H S; Trevisani, M; Hollenberg, M D; Wallace, J L; Caughey, G H; Mitchell, S E; Williams, L M; Geppetti, P; Mayer, E A; Bunnett, N W
Trypsin and mast cell tryptase cleave proteinase-activated receptor 2 and, by unknown mechanisms, induce widespread inflammation. We found that a large proportion of primary spinal afferent neurons, which express proteinase-activated receptor 2, also contain the proinflammatory neuropeptides calcitonin gene-related peptide and substance P. Trypsin and tryptase directly signal to neurons to stimulate release of these neuropeptides, which mediate inflammatory edema induced by agonists of proteinase-activated receptor 2. This new mechanism of protease-induced neurogenic inflammation may contribute to the proinflammatory effects of mast cells in human disease. Thus, tryptase inhibitors and antagonists of proteinase-activated receptor 2 may be useful anti-inflammatory agents.
PMID: 10655102
ISSN: 1078-8956
CID: 4156412
Substance P induction of murine keratinocyte PAM 212 interleukin 1 production is mediated by the neurokinin 2 receptor (NK-2R)
Song, I S; Bunnett, N W; Olerud, J E; Harten, B; Steinhoff, M; Brown, J R; Sung, K J; Armstrong, C A; Ansel, J C
The neurological system plays an important role in modulating some inflammatory skin diseases. Neuro-cutaneous interactions may be mediated by the release of neuropeptides such as substance P (SP) which activate immunocompetent cells in the skin by binding to high affinity neurokinin receptors (NKR). Since epidermal keratinocytes produce a variety of cytokines and are intimately associated with cutaneous sensory fibers, we tested the ability of these cells to participate in the cutaneous neuroimmune system by the secretion of potent cytokines such as interleukin 1 (IL-1) in response to released SP. RT-PCR studies demonstrated that cultured PAM 212 murine keratinocytes expressed mRNA for NK-2R but not NK-1R. Correspondingly, the addition of SP to these cells resulted in a rapid increase in intracellular Ca2+ levels that could be specifically blocked by an NK-2R antagonist. NK-2R was also shown in normal mouse epidermis by immunohistochemistry. SP augmented the expression of PAM 212 keratinocyte IL-1alpha mRNA in a dose and time dependent manner and this induction was inhibited by an NK-2R antagonist. Secretion of bioactive IL-1alpha by the PAM 212 keratinocytes was likewise stimulated by SP in a dose dependent manner. These data support the hypothesis that SP released from cutaneous sensory nerves contributes to neuroimmune inflammatory responses in the skin by modulating the expression and release of cytokines from epidermal keratinocytes.
PMID: 10688374
ISSN: 0906-6705
CID: 4156422