Searched for: in-biosketch:yes
person:buzsag01
Genetic threshold hypothesis of neocortical spike-and-wave discharges in the rat: an animal model of petit mal epilepsy
Vadasz C; Carpi D; Jando G; Kandel A; Urioste R; Horvath Z; Pierre E; Vadi D; Fleischer A; Buzsaki G
Neocortical high-voltage spike-and-wave discharges (HVS) in the rat are an animal model of petit mal epilepsy. Genetic analysis of total duration of HVS (s/12 hr) in reciprocal F1 and F2 hybrids of F344 and BN rats indicated that the phenotypic variability of HVS cannot be explained by a simple, monogenic Mendelian model. Biometrical analysis suggested the presence of additive, dominance, and sex-linked-epistatic effects, buffering maternal influence, and heterosis. High correlation was observed between average duration (s/episode) and frequency of occurrence of spike-and-wave episodes (n/12 hr) in parental and segregating generations, indicating that common genes affect both duration and frequency of the spike-and-wave pattern. We propose that both genetic and developmental-environmental factors control an underlying quantitative variable, which, above a certain threshold level, precipitates HVS discharges. These findings, together with the recent availability of rat DNA markers for total genome mapping, pave the way to the identification of genes that control the susceptibility of the brain to spike-and-wave discharges
PMID: 7485236
ISSN: 0148-7299
CID: 60303
Spike-and-wave epilepsy in rats: sex differences and inheritance of physiological traits
Jando, G; Carpi, D; Kandel, A; Urioste, R; Horvath, Z; Pierre, E; Vadi, D; Vadasz, C; Buzsaki, G
Spontaneously occurring spike-and-wave patterns were examined in seven to eight-month-old rats of the inbred Fischer 344 and Brown Norway strains and their F1 and F2 hybrids. Neocortical activity and movement were monitored for 12 night h. Spike-and-wave episodes were identified by a three-layer back-propagation neural network. The incidence, average duration and total duration of spike-and-wave episodes were significantly higher in F1 males and F2 hybrids than in the parental strains. Male rats of the Brown Norway strain had significantly more and longer episodes than females, whereas no sex differences were present in Fischer rats. The average intraepisodic frequency of spike-and-wave patterns was significantly lower in Fischer rats than in the other groups and significantly higher in males than females. Tremor (myoclonic movements) associated with spike-and-wave episodes was absent or of very small amplitude in Fischer rats but frequent and of large amplitude in Brown Norway rats and their F1 and F2 descendants. Most of the interstrain differences were limited to male rats. Spike-and-wave episodes recurred at predictable short-term (10-30 s) and long-term (15-30 min) periods. The long-term oscillation corresponded to a similar fluctuation of motor activity. The maximum probability of spike-and-wave patterns occurred at a relatively narrow range of delta power (0-3.1 Hz) of the background EEG activity. Systemic administration of the adrenergic alpha-2 agonist, clonidine, increased the incidence of spike-and-wave episodes several-fold. The total duration of spike-and-wave episodes in the clonidine sessions (15 min) and night sessions (12 h test) correlated significantly. We suggest that several genes interact with maturational, environmental and endocrine factors, resulting in sex differences, and produce the variety of EEG and behavioral findings encountered. In addition, we submit that the clonidine test may be useful in genetic investigations of human absence epilepsies. The findings of this work demonstrate that genetic manipulation of rodents is a promising method for producing analogous models for the various forms of human absence epilepsies
PMID: 7700522
ISSN: 0306-4522
CID: 140581
Gamma (40-100 Hz) oscillation in the hippocampus of the behaving rat
Bragin, A; Jando, G; Nadasdy, Z; Hetke, J; Wise, K; Buzsaki, G
The cellular generation and spatial distribution of gamma frequency (40-100 Hz) activity was examined in the hippocampus of the awake rat. Field potentials and unit activity were recorded by multiple site silicon probes (5- and 16-site shanks) and wire electrode arrays. Gamma waves were highly coherent along the long axis of the dentate hilus, but average coherence decreased rapidly in the CA3 and CA1 directions. Analysis of short epochs revealed large fluctuations in coherence values between the dentate and CA1 gamma waves. Current source density analysis revealed large sinks and sources in the dentate gyrus with spatial distribution similar to the dipoles evoked by stimulation of the perforant path. The frequency changes of gamma and theta waves positively correlated (40-100 Hz and 5-10 Hz, respectively). Putative interneurons in the dentate gyrus discharged at gamma frequency and were phase-locked to the ascending part of the gamma waves recorded from the hilus. Following bilateral lesion of the entorhinal cortex the power and frequency of hilar gamma activity significantly decreased or disappeared. Instead, a large amplitude but slower gamma pattern (25-50 Hz) emerged in the CA3-CA1 network. We suggest that gamma oscillation emerges from an interaction between intrinsic oscillatory properties of interneurons and the network properties of the dentate gyrus. We also hypothesize that under physiological conditions the hilar gamma oscillation may be entrained by the entorhinal rhythm and that gamma oscillation in the CA3-CA1 circuitry is suppressed by either the hilar region or the entorhinal cortex
PMID: 7823151
ISSN: 0270-6474
CID: 149383
Sharp wave-associated high-frequency oscillation (200 Hz) in the intact hippocampus: network and intracellular mechanisms
Ylinen, A; Bragin, A; Nadasdy, Z; Jando, G; Szabo, I; Sik, A; Buzsaki, G
Sharp wave bursts, induced by a cooperative discharge of CA3 pyramidal cells, are the most synchronous physiological pattern in the hippocampus. In conjunction with sharp wave bursts, CA1 pyramidal cells display a high-frequency (200 Hz) network oscillation (ripple). In the present study extracellular field and unit activity was recorded simultaneously from 16 closely spaces sites in the awake rat and the intracellular activity of CA1 pyramidal cells during the network oscillation was studied under anesthesia. Current source density analysis of the high-frequency oscillation revealed circumscribed sinks and sources in the vicinity of the pyramidal layer. Single pyramidal cells discharged at a low frequency but were phase locked to the negative peak of the locally derived field oscillation. Approximately 10% of the simultaneously recorded pyramidal cells fired during a given oscillatory event. Putative interneurons increased their discharge rates during the field ripples severalfold and often maintained a 200 Hz frequency during the oscillatory event. Under urethane and ketamine anesthesia the frequency of ripples was slower (100-120 Hz) than in the awake rat (180-200 Hz). Halothane anesthesia prevented the occurrence of high-frequency field oscillations in the CA1 region. Both the amplitude (1-4 mV) and phase of the intracellular ripple, but not its frequency, were voltage dependent. The amplitude of intracellular ripple was smallest between -70 and -80 mV. The phase of intracellular oscillation relative to the extracellular ripple reversed when the membrane was hyperpolarized more than -80 mV. A histologically verified CA1 basket cell increased its firing rate during the network oscillation and discharged at the frequency of the extracellular ripple. These findings indicate that the intracellularly recorded fast oscillatory rhythm is not solely dependent on membrane currents intrinsic to the CA1 pyramidal cells but it is a network driven phenomenon dependent upon the participation of inhibitory interneurons. We hypothesize that fast field oscillation (200 Hz) in the CA1 region reflects summed IPSPs in pyramidal cells as a result of high-frequency barrage of interneurons. The sharp wave associated synchronous discharge of pyramidal cells in the millisecond range can exert a powerful influence on retrohippocampal targets and may facilitate the transfer of transiently stored memory traces from the hippocampus to the entorhinal cortex
PMID: 7823136
ISSN: 0270-6474
CID: 149384
Intracellular correlates of hippocampal theta rhythm in identified pyramidal cells, granule cells, and basket cells
Ylinen, A; Soltesz, I; Bragin, A; Penttonen, M; Sik, A; Buzsaki, G
The cellular-synaptic generation of rhythmic slow activity (RSA or theta) in the hippocampus has been investigated by intracellular recording from principal cells and basket cells in anesthetized rats. In addition, the voltage-, coherence-, and phase versus depth profiles were examined by simultaneously recording field activity at 16 sites in the intact rat, during urethane anesthesia, and after bilateral entorhinal cortex lesion. In the extracellular experiments the large peak of theta at the hippocampal fissure was attenuated by urethane anesthesia and abolished by entorhinal cortex lesion. The phase versus depth profiles were similar during urethane anesthesia and following entorhinal cortex lesion but distinctly different in the intact, awake rat. These observations suggest that dendritic currents underlying theta in the awake rat may not be revealed under urethane anesthesia. The frequency of theta-related membrane potential oscillation was voltage-independent in pyramidal neurons, granule cells, and basket cells. On the other hand, the phase and amplitude of intracellular theta were voltage-dependent in all three cell types with an almost complete phase reversal at chloride equilibrium potential in pyramidal cells and basket cells. At strong depolarization levels (less than 30 mV) pyramidal cells emitted calcium spike oscillations, phase-locked to theta. Basket cells possessed the most regular membrane oscillations of the three cell types. All neurons of this study were verified by intracellular injection of biocytin. The observations provide direct evidence that theta-related rhythmic hyper-polarization of principal cells is brought about by the rhythmically discharging basket neurons.(ABSTRACT TRUNCATED AT 250 WORDS)
PMID: 7787949
ISSN: 1050-9631
CID: 149381
Possible physiological role of the perforant path-CA1 projection
Buzsaki, G; Penttonen, M; Bragin, A; Nadasdy, Z; Chrobak, J J
PMID: 7633517
ISSN: 1050-9631
CID: 149382
Short-term and long-term changes in the postischemic hippocampus
Hsu, M; Sik, A; Gallyas, F; Horvath, Z; Buzsaki, G
We have demonstrated a far more widespread and selective ischemic cell damage than previously thought. In area CA3, a distinct subpopulation of interneurons, characterized by their spiny dendrites and their calretinin content, was selectively vulnerable in the absence of any other CA3 involvement. In the dentate hilus, four different types of spiny cells were consistently damaged. The common denominator in these two cell groups is the presence of spines on their dendrites and hence the greater density of mossy fiber innervation they receive. A common mechanism of cell death may be the presence of non-NMDA receptor subtypes that are highly permeable to calcium. We speculate that they may constitute an important control mechanism in the CA3 region and the hilus, and impairment of this mechanism may be causal to delayed neuronal death in CA1. We have also shown that neuronal degeneration does not end after delayed cell death of CA1 pyramidal cells. Our results suggest that there is progressive degeneration throughout the life of the animal and degeneration of additional cell populations (e.g. CA1 interneurons and CA3 pyramidal cells) may also occur secondary to the insult
PMID: 7802410
ISSN: 0077-8923
CID: 149385
Selective activation of deep layer (V-VI) retrohippocampal cortical neurons during hippocampal sharp waves in the behaving rat
Chrobak, J J; Buzsaki, G
The coordinated activity of hippocampal neurons is reflected by macroscopic patterns, theta and sharp waves (SPW), evident in extracellular field recordings. The importance of these patterns is underscored by the ordered relation of specific neuronal populations to each pattern as well as the relation of each pattern to distinct behavioral states. During awake immobility, consummatory behavior, and slow wave sleep, CA3 and CA1 neurons participate in organized population bursts during SPW. In contrast, during theta-associated exploratory activity, the majority of principle cells are silent. Considerably less is known about the discharge properties of retrohippocampal neurons during theta, and particularly during SPW. These retrohippocampal neurons (entorhinal cortical, parasubicular, presubicular, and subicular) process and transmit information between the neocortex and the hippocampus. The present study examined the activity of these neurons in freely behaving rats during SPW (awake immobility) as well as theta (locomotion and REM sleep). A qualitative distinction between the activity of deep (V-VI) and superficial (II-III) layer retrohippocampal neurons was observed in relation to SPW as compared to theta. Deep layer retrohippocampal neurons exhibited a concurrent increase in activity during hippocampal SPW. In contrast, deep layer neurons were not modulated by the prominent theta oscillations observed throughout the hippocampus and entorhinal cortex. On the other hand, superficial layer retrohippocampal neurons were often phase-related to theta oscillations, but were surprisingly indifferent to the SPW-associated population bursting occurring within the deep layers. These findings indicate a concerted discharge of the hippocampal and retrohippocampal cortices during SPW that includes neurons within CA3, CA1, and subiculum as well as neurons in layers V-VI of the presubiculum, parasubiculum, and entorhinal cortex. Further, they suggest a temporal discontinuity in the input/output relations between the hippocampus and retrohippocampal structures. We suggest that SPW-associated population bursts in hippocampal and retrohippocampal cortices exert a powerful depolarizing effect on their postsynaptic neocortical targets and may represent a physiological mechanism for memory trace transfer from the hippocampus to the neocortex
PMID: 7931570
ISSN: 0270-6474
CID: 149386
Hippocampal theta activity following selective lesion of the septal cholinergic system
Lee, M G; Chrobak, J J; Sik, A; Wiley, R G; Buzsaki, G
The characteristic electroencephalographic patterns within the hippocampus are theta and sharp waves. Septal neurons are believed to play an essential role in the rhythm generation of the theta pattern. The present study examined the physiological consequences of complete and selective damage of septohippocampal cholinergic neurons on hippocampal theta activity in rats. A selective immunotoxin against nerve growth factor receptor bearing cholinergic neurons (192 immunoglobulin G-saporin), [Wiley R. G. et al. (1991) Brain Res. 562, 149-153] was infused into the medial septal area (0.11-0.42 microgram). Hippocampal electrical activity was monitored during trained wheel running, drinking and the paradoxical phase of sleep, as well as following cholinomimetic treatment. A moderate dose of toxin (0.21 microgram) eliminated the septohippocampal cholinergic projection, as evidenced by a near total absence of choline acetyltransferase-immunoreactive neurons in the medial septum and the vertical limb of the diagonal band, and by the absence of acetylcholinesterase-positive fibers in the dorsal hippocampus. In the same rats, parvalbumin immunoreactivity, a reliable marker for septohippocampal GABAergic neurons, [Freund T. F. (1989) Brain Res. 478, 375-381], remained unaltered. In addition, retrograde transport of the tracer fluorogold demonstrated that the parvalbumin cell population preserved its axonal projection to the hippocampus. Following toxin treatment, the power of hippocampal theta, but not its frequency, decreased in a dose-dependent manner. Reduction of theta power occurred between three and seven days after the toxin treatment and remained unaltered thereafter up to eight weeks. A dose which eliminated all septohippocampal cholinergic neurons (0.21 microgram) left a small but significant theta peak in the power spectra during wheel running, paradoxical phase of sleep and intraseptal infusion of carbachol (5 micrograms). Peripheral administration of physostigmine (1 mg/kg) induced only slow (1.5-2.0 Hz) rhythmic waves. No changes were observed in the gamma (50-100 Hz) band. These findings indicate that the integrity of the septohippocampal GABAergic projection is sufficient to maintain some hippocampal theta activity. We hypothesize that cholinergic neurons serve to increase the population phase-locking of septal cells and thereby regulate the magnitude of hippocampal theta
PMID: 7845584
ISSN: 0306-4522
CID: 149387
Inhibitory CA1-CA3-hilar region feedback in the hippocampus
Sik, A; Ylinen, A; Penttonen, M; Buzsaki, G
The organization of the hippocampus is generally thought of as a series of cell groups that form a unidirectionally excited chain, regulated by localized inhibitory circuits. With the use of in vivo intracellular labeling, histochemical, and extracellular tracing methods, a longitudinally widespread, inhibitory feedback in rat brain from the CA1 area to the CA3 and hilar regions was observed. This long-range, cross-regional inhibition may allow precise synchronization of population activity by timing the occurrence of action potentials in the principal cells and may contribute to the coordinated induction of synaptic plasticity in distributed networks
PMID: 8085161
ISSN: 0036-8075
CID: 149388