Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:littmd01

Total Results:

376


Neutralization sensitivity of human immunodeficiency virus type 1 primary isolates to antibodies and CD4-based reagents is independent of coreceptor usage

Trkola A; Ketas T; Kewalramani VN; Endorf F; Binley JM; Katinger H; Robinson J; Littman DR; Moore JP
We have investigated whether the identity of the coreceptor (CCR5, CXCR4, or both) used by primary human immunodeficiency virus type 1 (HIV-1) isolates to enter CD4+ cells influences the sensitivity of these isolates to neutralization by monoclonal antibodies and CD4-based agents. Coreceptor usage was not an important determinant of neutralization titer for primary isolates in peripheral blood mononuclear cells. We also studied whether dualtropic primary isolates (able to use both CCR5 and CXCR4) were differentially sensitive to neutralization by the same antibodies when entering U87MG-CD4 cells stably expressing either CCR5 or CXCR4. Again, we found that the coreceptor used by a virus did not greatly affect its neutralization sensitivity. Similar results were obtained for CCR5- or CXCR4-expressing HOS cell lines engineered to express green fluorescent protein as a reporter of HIV-1 entry. Neutralizing antibodies are therefore unlikely to be the major selection pressure which drives the phenotypic evolution (change in coreceptor usage) of HIV-1 that can occur in vivo. In addition, the increase in neutralization sensitivity found when primary isolates adapt to growth in transformed cell lines in vitro has little to do with alterations in coreceptor usage
PMCID:109478
PMID: 9499039
ISSN: 0022-538x
CID: 15118

Differences in chemokine coreceptor usage between genetic subtypes of HIV-1

Tscherning C; Alaeus A; Fredriksson R; Bjorndal A; Deng H; Littman DR; Fenyo EM; Albert J
HIV-1 uses chemokine coreceptors for cell entry. CXCR4 is the major coreceptor for T-cell-line-adapted isolates and CCR5 for non-T-cell-line-adapted isolates. This study investigated if coreceptor usage differs between genetic subtypes of HIV-1. Eighty-one primary isolates representing nine different genetic subtypes (A-J, except I) were tested on U87.CD4 glioma cells stably expressing chemokine receptor CCR1, CCR2b, CCR3, CCR5, or CXCR4. Coreceptor usage was compared to biological phenotype of the isolates (rapid/high, syncytium-inducing or slow/low, non-syncytium-inducing) and to clinical and immunological status of the study subjects. CXCR4 usage was perfectly correlated to the biological phenotype for all subtypes; all of 26 isolates with rapid/high phenotype and none of 55 isolates with slow/low phenotype could infect the CXCR4 expressing cell line. Importantly, the CXCR4-positive, rapid/high phenotype was underrepresented among subtype C isolates. Furthermore, dual tropism for CXCR4 and CCR5 was not found among subtype D isolates. Uni- and multivariate analyses indicated that these subtype-specific differences in coreceptor usage were not due to differences in clinical status, CD4 counts, or treatment. This study shows that CXCR4 usage determines the biological phenotype for all subtypes, but that there appear to exist subtype-dependent differences in frequency of usage of certain coreceptors. This opens up the possibility that genetic subtypes may differ in important biological properties such as virulence, tissue tropism, and transmissibility
PMID: 9499793
ISSN: 0042-6822
CID: 7978

A new classification for HIV-1 [Letter]

Berger EA; Doms RW; Fenyo EM; Korber BT; Littman DR; Moore JP; Sattentau QJ; Schuitemaker H; Sodroski J; Weiss RA
PMID: 9440686
ISSN: 0028-0836
CID: 57407

Chemokine receptors in HIV and SIV disease and in studies of animal models

Chapter by: Littman, DR; KewalRamani, VN; Unutmaz, D
in: 11E COLLOQUE DES CENT GARDES: RETROVIRUSES OF HUMAN AIDS AND RELATED ANIMAL DISEASES by Girard, M; Dodet, B [Eds]
pp. 61-70
ISBN: 2-84299-022-6
CID: 2413092

Itk and Fyn make independent contributions to T cell activation

Liao XC; Littman DR; Weiss A
Itk is a member of the Btk/Tec/Itk family of nonreceptor protein tyrosine kinases (PTKs), and has been implicated in T cell antigen receptor (TCR) signal transduction. Lck and Fyn are the Src-family nonreceptor PTKs that are involved in TCR signaling. To address the question of how these members of different families of PTKs functionally contribute to T cell development and to T cell activation, mice deficient for both Itk and either Lck or Fyn were generated. The Itk/Lck doubly deficient mice exhibited a phenotype similar to that of Lck-deficient mice. The phenotype of the Itk/Fyn doubly deficient mice was similar to that of Itk deficient mice. However the Itk/Fyn doubly deficient mice exhibited a more severe defect in TCR-induced proliferation of thymocytes and peripheral T cells than did mice deficient in either kinase alone. These data support the notion that Itk and Fyn both make independent contributions to TCR-induced T cell activation
PMCID:2199174
PMID: 9396778
ISSN: 0022-1007
CID: 7658

Signal transduction due to HIV-1 envelope interactions with chemokine receptors CXCR4 or CCR5

Davis CB; Dikic I; Unutmaz D; Hill CM; Arthos J; Siani MA; Thompson DA; Schlessinger J; Littman DR
Infection with HIV-1 requires expression of CD4 and the chemokine receptors CXCR4 or CCR5 at the target cell surface. Engagement of these receptors by the HIV-1 envelope glycoprotein is essential for membrane fusion, but may additionally activate intracellular signaling pathways. In this study, we demonstrate that chemokines and HIV-1 envelope glycoproteins from both T-tropic and macrophage-tropic strains rapidly induce tyrosine phosphorylation of the protein tyrosine kinase Pyk2. The response requires CXCR4 and CCR5 to be accessible on the cell surface. The results presented here provide the first evidence for activation of an intracellular signaling event that can initiate multiple signaling pathways as a consequence of contact between HIV-1 and chemokine receptors
PMCID:2199136
PMID: 9362541
ISSN: 0022-1007
CID: 12196

In vivo evolution of HIV-1 co-receptor usage and sensitivity to chemokine-mediated suppression

Scarlatti G; Tresoldi E; Bjorndal A; Fredriksson R; Colognesi C; Deng HK; Malnati MS; Plebani A; Siccardi AG; Littman DR; Fenyo EM; Lusso P
Following the identification of the C-C chemokines RANTES, MIP-1alpha and MIP-1beta as major human immunodeficiency virus (HIV)-suppressive factors produced by CD8+ T cells, several chemokine receptors were found to serve as membrane co-receptors for primate immunodeficiency lentiretroviruses. The two most widely used co-receptors thus far recognized, CCR5 and CXCR4, are expressed by both activated T lymphocytes and mononuclear phagocytes. CCR5, a specific RANTES, MIP-1alpha and MIP-1 receptor, is used preferentially by non-MT2-tropic HIV-1 and HIV-2 strains and by simian immunodeficiency virus (SIV), whereas CXCR4, a receptor for the C-X-C chemokine SDF-1, is used by MT2-tropic HIV-1 and HIV-2, but not by SIV. Other receptors with a more restricted cellular distribution, such as CCR2b, CCR3 and STRL33, can also function as co-receptors for selected viral isolates. The third variable region (V3) of the gp120 envelope glycoprotein of HIV-1 has been fingered as a critical determinant of the co-receptor choice. Here, we document a consistent pattern of evolution of viral co-receptor usage and sensitivity to chemokine-mediated suppression in a longitudinal follow-up of children with progressive HIV-1 infection. Viral isolates obtained during the asymptomatic stages generally used only CCR5 as a co-receptor and were inhibited by RANTES, MIP-1alpha and MIP-1beta, but not by SDF-1. By contrast, the majority of the isolates derived after the progression of the disease were resistant to C-C chemokines, having acquired the ability to use CXCR4 and, in some cases, CCR3, while gradually losing CCR5 usage. Surprisingly, most of these isolates were also insensitive to SDF-1, even when used in combination with RANTES. An early acquisition of CXCR4 usage predicted a poor prognosis. In children who progressed to AIDS without a shift to CXCR4 usage, all the sequential isolates were CCR5-dependent but showed a reduced sensitivity to C-C chemokines. Discrete changes in the V3 domain of gp120 were associated with the loss of sensitivity to C-C chemokines and the shift in co-receptor usage. These results suggest an adaptive evolution of HIV-1 in vivo, leading to escape from the control of the antiviral C-C chemokines
PMID: 9359702
ISSN: 1078-8956
CID: 15119

Chemokine receptors and animal models for HIV pathogenesis [Meeting Abstract]

Littman, DR; Davis, C; Deng, HK; Ellmeier, W; Hill, M; KewalRamani, V; Scarborough, J; Taniuchi, I; Unutmaz, D; Zou, YR
ISI:A1997YF09602022
ISSN: 1059-1524
CID: 53170

An enhancer that directs lineage-specific expression of CD8 in positively selected thymocytes and mature T cells

Ellmeier W; Sunshine MJ; Losos K; Hatam F; Littman DR
Positive selection of CD4+CD8+ T cells to the CD4+CD8- helper and CD4- CD8+ cytotoxic lineages is a multistep process that involves complex regulation of coreceptor gene expression. By analyzing expression of a reporter gene in transgenic mice, we have identified a DNA segment, located between the murine CD8beta and CD8alpha genes, that has enhancer activity restricted to CD8 lineage cells. Remarkably, this enhancer functions in thymocytes undergoing positive selection to the CD4-CD8+ phenotype but not in immature double-positive thymocytes. The enhancer also functions in gut intraepithelial lymphocytes that express CD8alpha but not CD8beta, suggesting that it is specific for CD8alpha expression. The tight correlation between activation of this enhancer and the final step in positive selection has important implications for understanding the mechanism of lineage commitment in thymocytes
PMID: 9354474
ISSN: 1074-7613
CID: 12237

Coreceptor usage of primary human immunodeficiency virus type 1 isolates varies according to biological phenotype

Bjorndal A; Deng H; Jansson M; Fiore JR; Colognesi C; Karlsson A; Albert J; Scarlatti G; Littman DR; Fenyo EM
The biological phenotype of primary human immunodeficiency virus type 1 (HIV-1) isolates varies according to the severity of the HIV infection. Here we show that the two previously described groups of rapid/high, syncytium-inducing (SI) and slow/low, non-syncytium-inducing (NSI) isolates are distinguished by their ability to utilize different chemokine receptors for entry into target cells. Recent studies have identified the C-X-C chemokine receptor CXCR4 (also named fusin or Lestr) and the C-C chemokine receptor CCR5 as the principal entry cofactors for T-cell-line-tropic and non-T-cell-line-tropic HIV-1, respectively. Using U87.CD4 glioma cell lines, stably expressing the chemokine receptor CCR1, CCR2b, CCR3, CCR5, or CXCR4, we have tested chemokine receptor specificity for a panel of genetically diverse envelope glycoprotein genes cloned from primary HIV-1 isolates and have found that receptor usage was closely associated with the biological phenotype of the virus isolate but not the genetic subtype. We have also analyzed a panel of 36 well-characterized primary HIV-1 isolates for syncytium induction and replication in the same series of cell lines. Infection by slow/low viruses was restricted to cells expressing CCR5, whereas rapid/high viruses could use a variety of chemokine receptors. In addition to the regular use of CXCR4, many rapid/high viruses used CCR5 and some also used CCR3 and CCR2b. Progressive HIV-1 infection is characterized by the emergence of viruses resistant to inhibition by beta-chemokines, which corresponded to changes in coreceptor usage. The broadening of the host range may even enable the use of uncharacterized coreceptors, in that two isolates from immunodeficient patients infected the parental U87.CD4 cell line lacking any engineered coreceptor. Two primary isolates with multiple coreceptor usage were shown to consist of mixed populations, one with a narrow host range using CCR5 only and the other with a broad host range using CCR3, CCR5, or CXCR4, similar to the original population. The results show that all 36 primary HIV-1 isolates induce syncytia, provided that target cells carry the particular coreceptor required by the virus
PMCID:192094
PMID: 9311827
ISSN: 0022-538x
CID: 15120