Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:neelb01

Total Results:

330


Characterization of two SHP-2-associated binding proteins and potential substrates in hematopoietic cells

Gu, H; Griffin, J D; Neel, B G
Multiple studies have demonstrated an important role for the Src homology 2-containing tyrosine phosphatase 2 (SHP-2) in receptor tyrosine kinase-regulated cell proliferation and differentiation. Recent studies have identified potential SHP-2 substrates which mediate these effects. SHP-2 also is implicated in several cytokine receptor signaling pathways and in Bcr-Abl transformation. However, its precise role and targets in normal and abnormal hematopoietic cells remain to be determined. We identified two novel tyrosyl-phosphorylated proteins associated with SHP-2 in hematopoietic cells. The first, a 97-kDa cytosolic protein (p97), associates inducibly with SHP-2 upon cytokine stimulation and constitutively in Bcr-Abl-transformed cells. In contrast, p135, a 135-kDa transmembrane glycoprotein, forms a distinct complex with SHP-2, independent of cytokine stimulation or Bcr-Abl transformation. Far Western analysis reveals that SHP-2, via its Src homology 2 domains, can interact directly with either protein. In vitro dephosphorylation experiments, as well as transient transfection studies using wild type and mutant SHP-2 constructs, suggest that p97 and p135 also are SHP-2 substrates. Our results indicate that SHP-2 forms at least two separate complexes in hematopoietic cells and point to new potential SHP-2 targets.
PMID: 9195950
ISSN: 0021-9258
CID: 1365722

Role of phosphatases in lymphocyte activation

Neel, B G
Many lymphocyte signaling pathways are regulated by protein tyrosyl phosphorylation, which is controlled by protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). Substantial progress has been made in defining the functions of lymphocyte PTPs. Individual PTPs can enhance or diminish cell signaling levels. The transmembrane PTP CD45 is a key positive element in multiple lymphocyte signaling pathways in vivo. New insights into the function of individual CD45 isoforms have emerged. Anti-CD45 antibodies with potent immunosuppressant activity have been identified, suggesting that CD45 may be a propitious target for drug design. Progress has also been made in elucidating the function and targets of specific nontransmembrane PTPs, particularly those with Src homology 2 domains.
PMID: 9203419
ISSN: 0952-7915
CID: 1365732

Protein tyrosine phosphatases in signal transduction

Neel, B G; Tonks, N K
Protein-tyrosyl phosphorylation, regulated by protein tyrosine kinases and protein tyrosine phosphatases (PTPs), is a key cellular control mechanism. Until recently, little was known about PTPs. However, the past two years have witnessed an explosion of information about PTP structure, regulation and function. Crystal structures of several PTPs have provided insights into enzymatic mechanisms and regulation and suggested the design of 'substrate-trapping' mutants. Candidate homophilic and heterophilic ligands for transmembrane PTPs have been identified, and roles for transmembrane PTPs in regulating cell-cell interactions have been suggested. Finally, progress has been made in understanding signaling by Src homology 2 domain containing PTPs and PTPs controlling yeast osmoregulatory pathways.
PMID: 9069265
ISSN: 0955-0674
CID: 1365742

Phosphorylation of protein-tyrosine phosphatase PTP-1B on identical sites suggests activation of a common signaling pathway during mitosis and stress response in mammalian cells

Shifrin, V I; Davis, R J; Neel, B G
PTP-1B is a widely expressed non-transmembrane tyrosine-specific phosphatase. Previous studies indicated that, at mitosis, PTP-1B undergoes phosphorylation on two sites, 352Ser-Pro-Leu-Asn and 386Ser-Pro-Ala-Lys. Although the Ser-386 site can be phosphorylated by Cyclin B/Cdc2 in vitro, the kinase for the Ser-352 site is unknown. We have found that these phosphorylation events are not unique to normal mitosis. Instead, treatment with many, but not all, stress stimuli, in particular osmotic shock and certain phosphatase and protein synthesis inhibitors, leads to phosphorylation of PTP-1B. Tryptic phosphopeptide and mutant analysis reveals that, as in mitosis, stress-induced PTP-1B phosphorylation involves both Ser-352 and Ser-386. Activation of the proline-directed kinases Erk1/2, JNKs, and p38 was neither necessary nor sufficient for stress-induced PTP-1B phosphorylation. Our data suggest the existence of a novel mitogen-activated protein kinase pathway in mammalian cells, which is activated at mitosis and in response to osmotic shock and other stresses and results in PTP-1B phosphorylation. This pathway may be similar to the recently described Spc1/Sty1 pathway in Schizosaccharomyces pombe.
PMID: 9006942
ISSN: 0021-9258
CID: 1365752

From form to function: signaling by protein tyrosine phosphatases

Tonks, N K; Neel, B G
PMID: 8898190
ISSN: 0092-8674
CID: 1365762

Genetic analysis reveals cell type-specific regulation of receptor tyrosine kinase c-Kit by the protein tyrosine phosphatase SHP1

Lorenz, U; Bergemann, A D; Steinberg, H N; Flanagan, J G; Li, X; Galli, S J; Neel, B G
Receptor protein tyrosine kinases (RTKs) transmit downstream signals via interactions with secondary signaling molecules containing SH2 domains. Although many SH2-phosphotyrosyl interactions have been defined in vitro, little is known about the physiological significance of specific RTK/SH2 interactions in vivo. Also, little is known about the mechanisms by which specific RTKs interact with and/or are regulated by specific protein tyrosine phosphatases (PTPs). To address such issue, we carried out a genetic analysis of the previously reported biochemical interaction between the RTK c-Kit, encoded at the W locus, and the SH2-containing non-transmembrane PTP SHP1, encoded at the motheaten (me) locus (1). Mice carrying a kinase-defective allele of c-Kit (Wv/+) were crossed with me/+ mice, which carry one effectively null allele of SHP1, and then backcrossed to generate all possible allelic combinations. Our results indicate strong intergenic complementation between these loci in hematopoietic progenitor cells. Compared to progenitors purified from normal mice, bone marrow progenitor cells (lin-) from me/me mice markedly hyper-proliferated in response to Kit ligand (KL). stimulation. Superimposition of the me/me genotype increased the number of one marrow-derived CFU-E from Wv/+ mice. Conversely, the presence of one or two copies of Wv decreased the number of macrophages and granulocytes in me/me lung, skin, peripheral blood and bone marrow, thereby decreasing the severity of the me/me phenotype. The decrease in dermal mast cells in Wv/Wv mice was rescued to levels found in Wv/+mice by superimposition of the me/me genotype. Surprisingly, however, the presence or absence of SHP1 had no effect on the proliferative response of bone marrow-derived cultured mast cells to KL or IL3 ex vivo. Nevertheless, the immediate-early response to KL stimulation, as measured by KL-induced tyrosyl phosphorylation, was substantially increased in mast cells from Wv/+:me/me compared to Wv/ +:+/+ mice, strongly suggesting that SHP1 directly dephosphorylates and regulates c-Kit. Taken together, our results establish that SHP1 negatively regulates signaling from c-Kit in vivo, but in a cell type-specific manner.
PMCID:2192792
PMID: 9064328
ISSN: 0022-1007
CID: 1365772

Regulation of colony-stimulating factor 1 receptor signaling by the SH2 domain-containing tyrosine phosphatase SHPTP1

Chen, H E; Chang, S; Trub, T; Neel, B G
SHPTP1 (PTP1C, HCP, SHP) is an SH2 domain-containing tyrosine phosphatase expressed predominantly in hematopoietic cells. A frameshift mutation in the SHPTP1 gene causes the motheaten (me/me) mouse. These mice are essentially SHPTP1 null and display multiple hematopoietic abnormalities, most prominently hyperproliferation and inappropriate activation of granulocytes and macrophages. The me/me phenotype suggests that SHPTP1 negatively regulates macrophage proliferative pathways. Using primary bone marrow-derived macrophages from me/me mice and normal littermates, we examined the role of SHPTP1 in regulating signaling by the major macrophage mitogen colony-stimulating factor 1 (CSF-1) (also known as macrophage colony-stimulating factor). Macrophages from me/me mice hyperproliferate in response to CSF-1. In the absence of SHPTP1, the CSF-1 receptor (CSF-1R) is hyperphosphorylated upon CSF-1 stimulation, suggesting that SHPTP1 dephosphorylates the CSF-1R. At least some CSF-1R-associated proteins also are hyperactivated. SHPTP1 is associated constitutively, via its SH2 domains, with an unidentified 130-kDa phosphotyrosyl protein (P130). P130 and SHPTP1 are further tyrosyl phosphorylated upon CSF-1 stimulation. Tyrosyl-phosphorylated SHPTP1 binds to Grb2 via the Grb2 SH2 domain. Moreover, in me/me macrophages, Grb2 is associated, via its SH3 domains, with several tyrosyl phosphoproteins. These proteins are hyperphosphorylated on tyrosyl residues in me/me macrophages, suggesting that Grb2 may recruit substrates for SHPTP1. Our results indicate that SHPTP1 is a critical negative regulator of CSF-1 signaling in vivo and suggest a potential new function for Grb2.
PMCID:231364
PMID: 8668185
ISSN: 0270-7306
CID: 1365782

Multiple requirements for SHPTP2 in epidermal growth factor-mediated cell cycle progression

Bennett, A M; Hausdorff, S F; O'Reilly, A M; Freeman, R M; Neel, B G
Using transient overexpression and microinjection approaches, we examined SHPTP2's function in growth factor signaling. Overexpression of catalytically inactive SHPTP2 (PTP2CS) but not catalytically inactive SHPTP1, inhibited mitogen-activated protein (MAP) kinase activation and Elk-1 transactivation following epidermal growth factor (EGF) stimulation of 293 cells. An SHPTP2 mutant with both C-terminal tyrosyl phosphorylation sites converted to phenylalanine (PTP2YF) was also without effect; moreover, PTP2YF rescued PTP2CS-induced inhibition of EGF-induced Elk-1 transactivation. PTP2CS did not inhibit transactivation by activated Ras, suggesting that SHPTP2 acts upstream of or parallel to Ras. Neither PTP2CS nor PTP2YF inhibited platelet-derived growth factor (PDGF)-induced Elk-1 transactivation. Thus, protein-tyrosine phosphatase activity, but not tyrosyl phosphorylation of SHPTP2, is required for the immediate-early responses to EGF but not to PDGF. To determine whether SHPTP2 is required later in the cell cycle, we assessed S-phase entry in NIH 3T3 cells microinjected with anti-SHPTP2 antibodies or with a glutathione S-transferase (GST) fusion protein encoding both SH2 domains (GST-SH2). Microinjection of anti-SHPTP2 antibodies prior to stimulation inhibited EGF- but no PDGF- or serum-induced S-phase entry. Anti-SHPTP2 antibodies or GST-SH2 fusion protein could inhibit EGF-induced S-phase entry for up to 8 h after EGF addition. Although MAP kinase activation was detected shortly after EGF stimulation, no MAP kinase activation was detected around the restriction point. Therefore, SHPTP2 is absolutely required for immediate-early and late events induced by some, but not all, growth factors, and the immediate-early and late signal transduction pathways regulated by SHPTP2 are distinguishable.
PMCID:231101
PMID: 8622663
ISSN: 0270-7306
CID: 1365792

A family of transmembrane proteins with homology to the MET-hepatocyte growth factor receptor

Maestrini, E; Tamagnone, L; Longati, P; Cremona, O; Gulisano, M; Bione, S; Tamanini, F; Neel, B G; Toniolo, D; Comoglio, P M
In hunting for unknown genes on the human X chromosome, we identified a cDNA in Xq28 encoding a transmembrane protein (SEX) of 1871 amino acids. SEX shares significant homology with the extracellular domain of the receptors encoded by the oncogenes MET, RON, and SEA [hepatocyte growth factor (HGF) receptor family]. Further screenings of cDNA libraries identified three additional sequences closely related to SEX: these were named SEP, OCT, and NOV and were located on human chromosomes 3p, 1, and 3q, respectively. The proteins encoded by these genes contain large cytoplasmic domains characterized by a distinctive highly conserved sequence (SEX domain). Northern blot analysis revealed different expression of the SEX family of genes in fetal tissues, with SEX, OCT, and NOV predominantly expressed in brain, and SEP expressed at highest levels in kidney. In situ hybridization analysis revealed that SEX has a distinctive pattern of expression in the developing nervous system of the mouse, where it is found in postmitotic neurons from the first stages of neuronal differentiation (9.5 day postcoitus). The SEX protein (220 kDa) is glycosylated and exposed at the cell surface. Unlike the receptors of the HGF family, p220SEX, a MET-SEX chimera or a constitutively dimerized TPR-SEX does not show tyrosine kinase activity. These data define a gene family (SEX family) involved in the development of neural and epithelial tissues, which encodes putative receptors with unexpected enzymatic or binding properties.
PMCID:40111
PMID: 8570614
ISSN: 0027-8424
CID: 1365802

Specific modulation of ectodermal cell fates in Xenopus embryos by glycogen synthase kinase

Itoh, K; Tang, T L; Neel, B G; Sokol, S Y
Shaggy is a downstream component of the wingless and Notch signaling pathways which operate during Drosophila development. To address the role of glycogen synthase kinase 3 beta (GSK3 beta), a mammalian homologue of Shaggy, in vertebrate embryogenesis, it was overexpressed in Xenopus embryos. Microinjection of rat GSK3 beta mRNA into animal ventral blastomeres of 8-cell-stage embryos triggered development of ectopic cement glands with an adjacent anterior neural tissue as evidenced by in situ hybridization with Xotx2, a fore/midbrain marker, and NCAM, a pan-neural marker. In contrast, animal dorsal injection of the same dose of GSK3 beta mRNA caused eye deficiencies, whereas vegetal injections had no pronounced effects on normal development. Using several mutated forms of rat GSK3 beta, we demonstrate that the observed phenotypes are dose-dependent and tightly correlate with GSK3 beta enzymatic activity. Lineage tracing experiments showed that the effects of GSK3 beta are cell autonomous and that ectopic cement glands and eye deficiencies arose directly from cells containing GSK3 beta mRNA. Molecular marker analysis of ectodermal explants overexpressing GSK3 beta has revealed activation of Xotx2 and of cement gland marker XAG-1, but expression of NCAM and XIF-3 was not detected. Phenotypic effects of mRNA encoding a Xenopus homologue of GSK3 beta were identical to those of rat GSK3 beta mRNA. We hypothesize that GSK3 beta mediates the initial steps of neural tissue specification and modulates anteroposterior ectodermal patterning via activation of Otx2 transcription. Our observations implicate GSK3 beta in signaling pathways operating during neural tissue development and during specification of anterior ectodermal cell fates.
PMID: 8575298
ISSN: 0950-1991
CID: 1365812