Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:littmd01

Total Results:

381


Signal transduction due to HIV-1 envelope interactions with chemokine receptors CXCR4 or CCR5

Davis CB; Dikic I; Unutmaz D; Hill CM; Arthos J; Siani MA; Thompson DA; Schlessinger J; Littman DR
Infection with HIV-1 requires expression of CD4 and the chemokine receptors CXCR4 or CCR5 at the target cell surface. Engagement of these receptors by the HIV-1 envelope glycoprotein is essential for membrane fusion, but may additionally activate intracellular signaling pathways. In this study, we demonstrate that chemokines and HIV-1 envelope glycoproteins from both T-tropic and macrophage-tropic strains rapidly induce tyrosine phosphorylation of the protein tyrosine kinase Pyk2. The response requires CXCR4 and CCR5 to be accessible on the cell surface. The results presented here provide the first evidence for activation of an intracellular signaling event that can initiate multiple signaling pathways as a consequence of contact between HIV-1 and chemokine receptors
PMCID:2199136
PMID: 9362541
ISSN: 0022-1007
CID: 12196

In vivo evolution of HIV-1 co-receptor usage and sensitivity to chemokine-mediated suppression

Scarlatti G; Tresoldi E; Bjorndal A; Fredriksson R; Colognesi C; Deng HK; Malnati MS; Plebani A; Siccardi AG; Littman DR; Fenyo EM; Lusso P
Following the identification of the C-C chemokines RANTES, MIP-1alpha and MIP-1beta as major human immunodeficiency virus (HIV)-suppressive factors produced by CD8+ T cells, several chemokine receptors were found to serve as membrane co-receptors for primate immunodeficiency lentiretroviruses. The two most widely used co-receptors thus far recognized, CCR5 and CXCR4, are expressed by both activated T lymphocytes and mononuclear phagocytes. CCR5, a specific RANTES, MIP-1alpha and MIP-1 receptor, is used preferentially by non-MT2-tropic HIV-1 and HIV-2 strains and by simian immunodeficiency virus (SIV), whereas CXCR4, a receptor for the C-X-C chemokine SDF-1, is used by MT2-tropic HIV-1 and HIV-2, but not by SIV. Other receptors with a more restricted cellular distribution, such as CCR2b, CCR3 and STRL33, can also function as co-receptors for selected viral isolates. The third variable region (V3) of the gp120 envelope glycoprotein of HIV-1 has been fingered as a critical determinant of the co-receptor choice. Here, we document a consistent pattern of evolution of viral co-receptor usage and sensitivity to chemokine-mediated suppression in a longitudinal follow-up of children with progressive HIV-1 infection. Viral isolates obtained during the asymptomatic stages generally used only CCR5 as a co-receptor and were inhibited by RANTES, MIP-1alpha and MIP-1beta, but not by SDF-1. By contrast, the majority of the isolates derived after the progression of the disease were resistant to C-C chemokines, having acquired the ability to use CXCR4 and, in some cases, CCR3, while gradually losing CCR5 usage. Surprisingly, most of these isolates were also insensitive to SDF-1, even when used in combination with RANTES. An early acquisition of CXCR4 usage predicted a poor prognosis. In children who progressed to AIDS without a shift to CXCR4 usage, all the sequential isolates were CCR5-dependent but showed a reduced sensitivity to C-C chemokines. Discrete changes in the V3 domain of gp120 were associated with the loss of sensitivity to C-C chemokines and the shift in co-receptor usage. These results suggest an adaptive evolution of HIV-1 in vivo, leading to escape from the control of the antiviral C-C chemokines
PMID: 9359702
ISSN: 1078-8956
CID: 15119

Chemokine receptors and animal models for HIV pathogenesis [Meeting Abstract]

Littman, DR; Davis, C; Deng, HK; Ellmeier, W; Hill, M; KewalRamani, V; Scarborough, J; Taniuchi, I; Unutmaz, D; Zou, YR
ISI:A1997YF09602022
ISSN: 1059-1524
CID: 53170

An enhancer that directs lineage-specific expression of CD8 in positively selected thymocytes and mature T cells

Ellmeier W; Sunshine MJ; Losos K; Hatam F; Littman DR
Positive selection of CD4+CD8+ T cells to the CD4+CD8- helper and CD4- CD8+ cytotoxic lineages is a multistep process that involves complex regulation of coreceptor gene expression. By analyzing expression of a reporter gene in transgenic mice, we have identified a DNA segment, located between the murine CD8beta and CD8alpha genes, that has enhancer activity restricted to CD8 lineage cells. Remarkably, this enhancer functions in thymocytes undergoing positive selection to the CD4-CD8+ phenotype but not in immature double-positive thymocytes. The enhancer also functions in gut intraepithelial lymphocytes that express CD8alpha but not CD8beta, suggesting that it is specific for CD8alpha expression. The tight correlation between activation of this enhancer and the final step in positive selection has important implications for understanding the mechanism of lineage commitment in thymocytes
PMID: 9354474
ISSN: 1074-7613
CID: 12237

Coreceptor usage of primary human immunodeficiency virus type 1 isolates varies according to biological phenotype

Bjorndal A; Deng H; Jansson M; Fiore JR; Colognesi C; Karlsson A; Albert J; Scarlatti G; Littman DR; Fenyo EM
The biological phenotype of primary human immunodeficiency virus type 1 (HIV-1) isolates varies according to the severity of the HIV infection. Here we show that the two previously described groups of rapid/high, syncytium-inducing (SI) and slow/low, non-syncytium-inducing (NSI) isolates are distinguished by their ability to utilize different chemokine receptors for entry into target cells. Recent studies have identified the C-X-C chemokine receptor CXCR4 (also named fusin or Lestr) and the C-C chemokine receptor CCR5 as the principal entry cofactors for T-cell-line-tropic and non-T-cell-line-tropic HIV-1, respectively. Using U87.CD4 glioma cell lines, stably expressing the chemokine receptor CCR1, CCR2b, CCR3, CCR5, or CXCR4, we have tested chemokine receptor specificity for a panel of genetically diverse envelope glycoprotein genes cloned from primary HIV-1 isolates and have found that receptor usage was closely associated with the biological phenotype of the virus isolate but not the genetic subtype. We have also analyzed a panel of 36 well-characterized primary HIV-1 isolates for syncytium induction and replication in the same series of cell lines. Infection by slow/low viruses was restricted to cells expressing CCR5, whereas rapid/high viruses could use a variety of chemokine receptors. In addition to the regular use of CXCR4, many rapid/high viruses used CCR5 and some also used CCR3 and CCR2b. Progressive HIV-1 infection is characterized by the emergence of viruses resistant to inhibition by beta-chemokines, which corresponded to changes in coreceptor usage. The broadening of the host range may even enable the use of uncharacterized coreceptors, in that two isolates from immunodeficient patients infected the parental U87.CD4 cell line lacking any engineered coreceptor. Two primary isolates with multiple coreceptor usage were shown to consist of mixed populations, one with a narrow host range using CCR5 only and the other with a broad host range using CCR3, CCR5, or CXCR4, similar to the original population. The results show that all 36 primary HIV-1 isolates induce syncytia, provided that target cells carry the particular coreceptor required by the virus
PMCID:192094
PMID: 9311827
ISSN: 0022-538x
CID: 15120

Antiviral immune responses in Itk-deficient mice

Bachmann MF; Littman DR; Liao XC
Mice lacking Itk, a T-cell-specific protein tyrosine kinase, have reduced numbers of T cells and reduced responses to allogeneic major histocompatibility molecules. This study analyzed antiviral immune responses in mice deficient for Itk. Primary cytotoxic T-lymphocyte (CTL) responses were analyzed after infection with lymphocytic choriomeningitis virus (LCMV), vaccinia virus (VV), and vesicular stomatitis virus (VSV). Ex vivo CTL activity was consistently reduced by a factor of two to six for the different viruses. CTL responses after restimulation in vitro were similarly reduced unless exogenous cytokines were added. In the presence of interleukin-2 or concanavalin A supernatant, Itk-deficient and control mice responded similarly. Interestingly, while LCMV was completely eliminated by day 8 in both Itk-deficient and control mice, VV cleared from itk-/- mice with delayed kinetics. Antibody responses were evaluated after VSV infection. Both the T-cell-independent neutralizing immunoglobulin M (IgM) and the T-cell-dependent IgG responses were similar in Itk-deficient and control mice. Taken together, the results show that CTL responses are reduced in the absence of Itk whereas antiviral B-cell responses are not affected
PMCID:192066
PMID: 9311799
ISSN: 0022-538x
CID: 15121

Envelope glycoproteins from human immunodeficiency virus types 1 and 2 and simian immunodeficiency virus can use human CCR5 as a coreceptor for viral entry and make direct CD4-dependent interactions with this chemokine receptor

Hill CM; Deng H; Unutmaz D; Kewalramani VN; Bastiani L; Gorny MK; Zolla-Pazner S; Littman DR
Several members of the chemokine receptor family have recently been identified as coreceptors, with CD4, for entry of human immunodeficiency virus type 1 (HIV-1) into target cells. In this report, we show that the envelope glycoproteins of several strains of HIV-2 and simian immunodeficiency virus (SIV) employ the same chemokine receptors for infection. Envelope glycoproteins from HIV-2 use CCR5 or CXCR4, while those from several strains of SIV use CCR5. Our data indicate also that some viral envelopes can use more than one coreceptor for entry and suggest that some of these coreceptors remain to be identified. To further understand how different envelope molecules use CCR5 as an entry cofactor, we show that soluble purified envelope glycoproteins (SU component) from CCR5-tropic HIV-1, HIV-2, and SIV can compete for binding of iodinated chemokine to CCR5. The competition is dependent on binding of the SU glycoprotein to cell surface CD4 and implies a direct interaction between envelope glycoproteins and CCR5. This interaction is specific since it is not observed with SU glycoprotein from a CXCR4-tropic virus or with a chemokine receptor that is not competent for viral entry (CCR1). For HIV-1, the interaction can be inhibited by antibodies specific for the V3 loop of SU. Soluble CD4 was found to potentiate binding of the HIV-2 ST and SIVmac239 envelope glycoproteins to CCR5, suggesting that a CD4-induced conformational change in SU is required for subsequent binding to CCR5. These data suggest a common fundamental mechanism by which structurally diverse HIV-1, HIV-2, and SIV envelope glycoproteins interact with CD4 and CCR5 to mediate viral entry
PMCID:191902
PMID: 9261346
ISSN: 0022-538x
CID: 57413

Cell and viral regulatory elements enhance the expression and function of a human immunodeficiency virus inhibitory gene

Ranga U; Woffendin C; Yang ZY; Xu L; Verma S; Littman DR; Nabel GJ
Regulated expression of recombinant genes in CD4+ cells is an important objective for gene therapy of AIDS, as these cells represent the principal target for viral replication of human immunodeficiency virus (HIV). We report here that specific combinations of CD4 cell-specific and viral regulatory elements can enhance expression of an antiviral gene product. Different viral regulatory elements were incorporated into a previously reported CD4 locus control region to increase the expression of reporter genes in T and monocytic cell lines. The CD4-specific regulatory elements were included to enhance expression in CD4 cells, and viral regulatory regions, including the cytomegalovirus immediate-early (CMV IE) upstream enhancer, which contains the kappa B and Ap1 regulatory elements and a Tat-responsive element of the HIV type 1 long terminal repeat, were used to increase gene expression and modulate its activity in response to viral infection. In transient transfection assays, this vector was 100- to 1,000-fold more active than the original CD4 regulatory elements alone. Expression of an inhibitory form of the Rev protein, Rev M10, was more effective than previously described vectors and protected against productive viral replication in CD4+ peripheral blood mononuclear cells. The combination of CD4 lineage-specific and viral regulatory elements will facilitate the development of more effective antiviral genetic strategies for AIDS
PMCID:191988
PMID: 9261432
ISSN: 0022-538x
CID: 15122

Itk negatively regulates induction of T cell proliferation by CD28 costimulation

Liao XC; Fournier S; Killeen N; Weiss A; Allison JP; Littman DR
CD28 is a cell surface molecule that mediates a costimulatory signal crucial for T cell proliferation and lymphokine production. The signal transduction mechanisms of CD28 are not well understood. Itk, a nonreceptor protein tyrosine kinase specifically expressed in T cells and mast cells, has been implicated in the CD28 signaling pathway because of reports that it becomes phosphorylated on tyrosines and associates with CD28 upon cross-linking of the cell surface molecule. To determine whether Itk plays a functional role in CD28 signaling, we compared T cells from Itk-deficient mice and control mice for their responses to CD28 costimulation. T cells defective in Itk were found to be fully competent to respond to costimulation. Whereas the CD3-mediated proliferative response was severely compromised in the absence of Itk, the calcineurin-independent CD28-mediated response was significantly elevated when compared with cells from control animals. The augmented proliferation was not due to increased production of interleukin-2. The results suggest that Itk has distinct roles in the CD3 versus the CD28 signaling pathways. By negatively regulating the amplitude of signaling upon CD28 costimulation, Itk may provide a means for modulating the outcome of T cell activation during development and during antigen-driven immune responses
PMCID:2198978
PMID: 9221751
ISSN: 0022-1007
CID: 15123

Expression cloning of new receptors used by simian and human immunodeficiency viruses

Deng HK; Unutmaz D; KewalRamani VN; Littman DR
Several members of the chemokine-receptor family serve, in conjunction with CD4, as receptors for the entry of human immunodeficiency virus type I (HIV-1) into cells. The principal receptor for entry of macrophage-tropic (M-tropic) HIV-1 strains is CCR5, whereas that for T-cell-line-tropic (T-tropic) strains is CXCR4. Unlike HIV-1, infection with either M-tropic or T-tropic strains of simian immunodeficiency virus (SIV) can be mediated by CCR5, but not CXCR4. SIV strains will also infect CD4+ cells that lack CCR5, which suggests that these strains use as yet unidentified receptors. Here we use an expression-cloning strategy to identify SIV receptors and have isolated genes encoding two members of the seven-transmembrane G-protein-coupled receptor family that are used not only by SIVs, but also by strains of HIV-2 and M-tropic HIV-1. Both receptors are closely related to the chemokine-receptor family and are expressed in lymphoid tissues. One of the receptors is also expressed in colon and may therefore be important in viral transmission. Usage of these new receptors following experimental infection of non-human primates with SIV strains may provide important insight into viral transmission and the mechanisms of SIV- and HIV-induced acquired immune-deficiency syndrome
PMID: 9230441
ISSN: 0028-0836
CID: 56936