Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:af137

Total Results:

63


Temporal integration in human auditory cortex is predominantly yoked to absolute time, not structure duration

Norman-Haignere, Sam V; Keshishian, Menoua K; Devinsky, Orrin; Doyle, Werner; McKhann, Guy M; Schevon, Catherine A; Flinker, Adeen; Mesgarani, Nima
Sound structures such as phonemes and words have highly variable durations. Thus, there is a fundamental difference between integrating across absolute time (e.g., 100 ms) vs. sound structure (e.g., phonemes). Auditory and cognitive models have traditionally cast neural integration in terms of time and structure, respectively, but the extent to which cortical computations reflect time or structure remains unknown. To answer this question, we rescaled the duration of all speech structures using time stretching/compression and measured integration windows in the human auditory cortex using a new experimental/computational method applied to spatiotemporally precise intracranial recordings. We observed significantly longer integration windows for stretched speech, but this lengthening was very small (~5%) relative to the change in structure durations, even in non-primary regions strongly implicated in speech-specific processing. These findings demonstrate that time-yoked computations dominate throughout the human auditory cortex, placing important constraints on neurocomputational models of structure processing.
PMCID:11463558
PMID: 39386565
ISSN: 2692-8205
CID: 5751762

Temporal dynamics of short-term neural adaptation across human visual cortex

Brands, Amber Marijn; Devore, Sasha; Devinsky, Orrin; Doyle, Werner; Flinker, Adeen; Friedman, Daniel; Dugan, Patricia; Winawer, Jonathan; Groen, Iris Isabelle Anna
Neural responses in visual cortex adapt to prolonged and repeated stimuli. While adaptation occurs across the visual cortex, it is unclear how adaptation patterns and computational mechanisms differ across the visual hierarchy. Here we characterize two signatures of short-term neural adaptation in time-varying intracranial electroencephalography (iEEG) data collected while participants viewed naturalistic image categories varying in duration and repetition interval. Ventral- and lateral-occipitotemporal cortex exhibit slower and prolonged adaptation to single stimuli and slower recovery from adaptation to repeated stimuli compared to V1-V3. For category-selective electrodes, recovery from adaptation is slower for preferred than non-preferred stimuli. To model neural adaptation we augment our delayed divisive normalization (DN) model by scaling the input strength as a function of stimulus category, enabling the model to accurately predict neural responses across multiple image categories. The model fits suggest that differences in adaptation patterns arise from slower normalization dynamics in higher visual areas interacting with differences in input strength resulting from category selectivity. Our results reveal systematic differences in temporal adaptation of neural population responses between lower and higher visual brain areas and show that a single computational model of history-dependent normalization dynamics, fit with area-specific parameters, accounts for these differences.
PMID: 38815000
ISSN: 1553-7358
CID: 5663772

Alignment of brain embeddings and artificial contextual embeddings in natural language points to common geometric patterns

Goldstein, Ariel; Grinstein-Dabush, Avigail; Schain, Mariano; Wang, Haocheng; Hong, Zhuoqiao; Aubrey, Bobbi; Schain, Mariano; Nastase, Samuel A; Zada, Zaid; Ham, Eric; Feder, Amir; Gazula, Harshvardhan; Buchnik, Eliav; Doyle, Werner; Devore, Sasha; Dugan, Patricia; Reichart, Roi; Friedman, Daniel; Brenner, Michael; Hassidim, Avinatan; Devinsky, Orrin; Flinker, Adeen; Hasson, Uri
Contextual embeddings, derived from deep language models (DLMs), provide a continuous vectorial representation of language. This embedding space differs fundamentally from the symbolic representations posited by traditional psycholinguistics. We hypothesize that language areas in the human brain, similar to DLMs, rely on a continuous embedding space to represent language. To test this hypothesis, we densely record the neural activity patterns in the inferior frontal gyrus (IFG) of three participants using dense intracranial arrays while they listened to a 30-minute podcast. From these fine-grained spatiotemporal neural recordings, we derive a continuous vectorial representation for each word (i.e., a brain embedding) in each patient. Using stringent zero-shot mapping we demonstrate that brain embeddings in the IFG and the DLM contextual embedding space have common geometric patterns. The common geometric patterns allow us to predict the brain embedding in IFG of a given left-out word based solely on its geometrical relationship to other non-overlapping words in the podcast. Furthermore, we show that contextual embeddings capture the geometry of IFG embeddings better than static word embeddings. The continuous brain embedding space exposes a vector-based neural code for natural language processing in the human brain.
PMCID:10980748
PMID: 38553456
ISSN: 2041-1723
CID: 5645352

Clinical prediction of GBA carrier status in Parkinson's disease

Greenberg, Julia; Astudillo, Kelly; Frucht, Steven J; Flinker, Adeen; Riboldi, Giulietta M
INTRODUCTION/UNASSIGNED:-variant carrier status will help target genetic testing in clinical settings where cost and access limit its availability. METHODS/UNASSIGNED:variant carrier status. The model was cross-validated across the two cohorts. RESULTS/UNASSIGNED:variants in the PPMI cohort and study cohort (AUC 0.897 and 0.738, respectively). The PPMI cohort model successfully generalized to the study cohort data using both MDS-UPDRS scores and binomial data (AUC 0.740 and 0.734, respectively) while the study cohort model did not. CONCLUSIONS/UNASSIGNED:variants.
PMCID:11031818
PMID: 38645305
ISSN: 2590-1125
CID: 5676312

Temporal dynamics of neural responses in human visual cortex

Groen, Iris I A; Piantoni, Giovanni; Montenegro, Stephanie; Flinker, Adeen; Devore, Sasha; Devinsky, Orrin; Doyle, Werner; Dugan, Patricia; Friedman, Daniel; Ramsey, Nick; Petridou, Natalia; Winawer, Jonathan
Neural responses to visual stimuli exhibit complex temporal dynamics, including sub-additive temporal summation, response reduction with repeated or sustained stimuli (adaptation), and slower dynamics at low contrast. These phenomena are often studied independently. Here, we demonstrate these phenomena within the same experiment and model the underlying neural computations with a single computational model. We extracted time-varying responses from electrocorticographic (ECoG) recordings from patients presented with stimuli that varied in contrast, duration, and inter-stimulus interval (ISI). Aggregating data across patients from both sexes yielded 98 electrodes with robust visual responses, covering both earlier (V1-V3) and higher-order (V3a/b, LO, TO, IPS) retinotopic maps. In all regions, the temporal dynamics of neural responses exhibit several non-linear features: peak response amplitude saturates with high contrast and longer stimulus durations; the response to a second stimulus is suppressed for short ISIs and recovers for longer ISIs; response latency decreases with increasing contrast. These features are accurately captured by a computational model comprised of a small set of canonical neuronal operations: linear filtering, rectification, exponentiation, and a delayed divisive normalization. We find that an increased normalization term captures both contrast- and adaptation-related response reductions, suggesting potentially shared underlying mechanisms. We additionally demonstrate both changes and invariance in temporal response dynamics between earlier and higher-order visual areas. Together, our results reveal the presence of a wide range of temporal and contrast-dependent neuronal dynamics in the human visual cortex, and demonstrate that a simple model captures these dynamics at millisecond resolution.SIGNIFICANCE STATEMENTSensory inputs and neural responses change continuously over time. It is especially challenging to understand a system that has both dynamic inputs and outputs. Here we use a computational modeling approach that specifies computations to convert a time-varying input stimulus to a neural response time course, and use this to predict neural activity measured in the human visual cortex. We show that this computational model predicts a wide variety of complex neural response shapes that we induced experimentally by manipulating the duration, repetition and contrast of visual stimuli. By comparing data and model predictions, we uncover systematic properties of temporal dynamics of neural signals, allowing us to better understand how the brain processes dynamic sensory information.
PMID: 35999054
ISSN: 1529-2401
CID: 5338232

Shared computational principles for language processing in humans and deep language models

Goldstein, Ariel; Zada, Zaid; Buchnik, Eliav; Schain, Mariano; Price, Amy; Aubrey, Bobbi; Nastase, Samuel A; Feder, Amir; Emanuel, Dotan; Cohen, Alon; Jansen, Aren; Gazula, Harshvardhan; Choe, Gina; Rao, Aditi; Kim, Catherine; Casto, Colton; Fanda, Lora; Doyle, Werner; Friedman, Daniel; Dugan, Patricia; Melloni, Lucia; Reichart, Roi; Devore, Sasha; Flinker, Adeen; Hasenfratz, Liat; Levy, Omer; Hassidim, Avinatan; Brenner, Michael; Matias, Yossi; Norman, Kenneth A; Devinsky, Orrin; Hasson, Uri
Departing from traditional linguistic models, advances in deep learning have resulted in a new type of predictive (autoregressive) deep language models (DLMs). Using a self-supervised next-word prediction task, these models generate appropriate linguistic responses in a given context. In the current study, nine participants listened to a 30-min podcast while their brain responses were recorded using electrocorticography (ECoG). We provide empirical evidence that the human brain and autoregressive DLMs share three fundamental computational principles as they process the same natural narrative: (1) both are engaged in continuous next-word prediction before word onset; (2) both match their pre-onset predictions to the incoming word to calculate post-onset surprise; (3) both rely on contextual embeddings to represent words in natural contexts. Together, our findings suggest that autoregressive DLMs provide a new and biologically feasible computational framework for studying the neural basis of language.
PMCID:8904253
PMID: 35260860
ISSN: 1546-1726
CID: 5190382

Multiscale temporal integration organizes hierarchical computation in human auditory cortex

Norman-Haignere, Sam V; Long, Laura K; Devinsky, Orrin; Doyle, Werner; Irobunda, Ifeoma; Merricks, Edward M; Feldstein, Neil A; McKhann, Guy M; Schevon, Catherine A; Flinker, Adeen; Mesgarani, Nima
To derive meaning from sound, the brain must integrate information across many timescales. What computations underlie multiscale integration in human auditory cortex? Evidence suggests that auditory cortex analyses sound using both generic acoustic representations (for example, spectrotemporal modulation tuning) and category-specific computations, but the timescales over which these putatively distinct computations integrate remain unclear. To answer this question, we developed a general method to estimate sensory integration windows-the time window when stimuli alter the neural response-and applied our method to intracranial recordings from neurosurgical patients. We show that human auditory cortex integrates hierarchically across diverse timescales spanning from ~50 to 400 ms. Moreover, we find that neural populations with short and long integration windows exhibit distinct functional properties: short-integration electrodes (less than ~200 ms) show prominent spectrotemporal modulation selectivity, while long-integration electrodes (greater than ~200 ms) show prominent category selectivity. These findings reveal how multiscale integration organizes auditory computation in the human brain.
PMID: 35145280
ISSN: 2397-3374
CID: 5156382

Long-term priors influence visual perception through recruitment of long-range feedback

Hardstone, Richard; Zhu, Michael; Flinker, Adeen; Melloni, Lucia; Devore, Sasha; Friedman, Daniel; Dugan, Patricia; Doyle, Werner K; Devinsky, Orrin; He, Biyu J
Perception results from the interplay of sensory input and prior knowledge. Despite behavioral evidence that long-term priors powerfully shape perception, the neural mechanisms underlying these interactions remain poorly understood. We obtained direct cortical recordings in neurosurgical patients as they viewed ambiguous images that elicit constant perceptual switching. We observe top-down influences from the temporal to occipital cortex, during the preferred percept that is congruent with the long-term prior. By contrast, stronger feedforward drive is observed during the non-preferred percept, consistent with a prediction error signal. A computational model based on hierarchical predictive coding and attractor networks reproduces all key experimental findings. These results suggest a pattern of large-scale information flow change underlying long-term priors' influence on perception and provide constraints on theories about long-term priors' influence on perception.
PMID: 34725348
ISSN: 2041-1723
CID: 5037932

Moment-by-moment tracking of naturalistic learning and its underlying hippocampo-cortical interactions

Michelmann, Sebastian; Price, Amy R; Aubrey, Bobbi; Strauss, Camilla K; Doyle, Werner K; Friedman, Daniel; Dugan, Patricia C; Devinsky, Orrin; Devore, Sasha; Flinker, Adeen; Hasson, Uri; Norman, Kenneth A
Humans form lasting memories of stimuli that were only encountered once. This naturally occurs when listening to a story, however it remains unclear how and when memories are stored and retrieved during story-listening. Here, we first confirm in behavioral experiments that participants can learn about the structure of a story after a single exposure and are able to recall upcoming words when the story is presented again. We then track mnemonic information in high frequency activity (70-200 Hz) as patients undergoing electrocorticographic recordings listen twice to the same story. We demonstrate predictive recall of upcoming information through neural responses in auditory processing regions. This neural measure correlates with behavioral measures of event segmentation and learning. Event boundaries are linked to information flow from cortex to hippocampus. When listening for a second time, information flow from hippocampus to cortex precedes moments of predictive recall. These results provide insight on a fine-grained temporal scale into how episodic memory encoding and retrieval work under naturalistic conditions.
PMID: 34518520
ISSN: 2041-1723
CID: 5012282

Gender bias in academia: A lifetime problem that needs solutions

Llorens, Anaïs; Tzovara, Athina; Bellier, Ludovic; Bhaya-Grossman, Ilina; Bidet-Caulet, Aurélie; Chang, William K; Cross, Zachariah R; Dominguez-Faus, Rosa; Flinker, Adeen; Fonken, Yvonne; Gorenstein, Mark A; Holdgraf, Chris; Hoy, Colin W; Ivanova, Maria V; Jimenez, Richard T; Jun, Soyeon; Kam, Julia W Y; Kidd, Celeste; Marcelle, Enitan; Marciano, Deborah; Martin, Stephanie; Myers, Nicholas E; Ojala, Karita; Perry, Anat; Pinheiro-Chagas, Pedro; Riès, Stephanie K; Saez, Ignacio; Skelin, Ivan; Slama, Katarina; Staveland, Brooke; Bassett, Danielle S; Buffalo, Elizabeth A; Fairhall, Adrienne L; Kopell, Nancy J; Kray, Laura J; Lin, Jack J; Nobre, Anna C; Riley, Dylan; Solbakk, Anne-Kristin; Wallis, Joni D; Wang, Xiao-Jing; Yuval-Greenberg, Shlomit; Kastner, Sabine; Knight, Robert T; Dronkers, Nina F
Despite increased awareness of the lack of gender equity in academia and a growing number of initiatives to address issues of diversity, change is slow, and inequalities remain. A major source of inequity is gender bias, which has a substantial negative impact on the careers, work-life balance, and mental health of underrepresented groups in science. Here, we argue that gender bias is not a single problem but manifests as a collection of distinct issues that impact researchers' lives. We disentangle these facets and propose concrete solutions that can be adopted by individuals, academic institutions, and society.
PMID: 34237278
ISSN: 1097-4199
CID: 4933422