Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:balapb01

Total Results:

74


Biochemical and pharmacological characterization of three toxic phospholipase A2s from Daboia russelii snake venom

Kumar, J R; Basavarajappa, Balapal S; Vishwanath, B S; Gowda, T Veerabasappa
Three isoenzymes of phospholipase A2 (PLA2), VRV-PL-IIIc, VRV-PL-VII, and VRV-PL-IX were isolated from Daboia russelii snake venom. The venom, upon gel filtration on Sephadex G-75 column, resolved into six peaks (DRG75 I-VI). The VRV-PL-IIIc was purified by subjecting DRG75II to homogeneity by rechromatography in the presence of 8M urea on Sephadex G-75 column. The other two isoenzymes VRV-PL-VII and VRV-PL-IX were purified by subjecting DRG75III to ion exchange chromatography on CM-Sephadex C-25 column. Mol wt. for the three PLA2s, VRV-PL-IIIc, VRV-PL-VII, and VRV-PL-IX are 13.003kDa, 13.100kDa and 12.531kDa respectively. The VRV-PL-IIIc is not lethal to mice up to 14mg/kg body weight but it affects blood sinusoids and causes necrosis of the hepatocytes in liver. It causes hemorrhage in kidney and shrinkage of renal corpuscles and renal tubules. The LD50s for VRV-PL-VII and VRV-PL-IX are 7 and 7.5mg/kg body weight respectively. They induced neurotoxic symptoms similar to VRV-PL-V. All the three PLA2s are anticoagulant and induced varying degree of edema in the foot pads of mice. VRV-PL-V and VRV-PL-VII are shown to act as pre and post synaptic toxins, while VRV-PL-IX acts as presynaptic toxin. This is evident from experiments conducted on cultured hippocampal neurons by patch clamp electrophysiology.
PMID: 25478875
ISSN: 1532-0456
CID: 4142272

CB1-receptor knockout neonatal mice are protected against ethanol-induced impairments of DNMT1, DNMT3A, and DNA methylation

Nagre, Nagaraja N; Subbanna, Shivakumar; Shivakumar, Madhu; Psychoyos, Delphine; Basavarajappa, Balapal S
The significant consequences of ethanol use during pregnancy are neurobehavioral abnormalities involving hippocampal and neocortex malfunctions that cause learning and memory deficits collectively named fetal alcohol spectrum disorder. However, the molecular mechanisms underlying these abnormalities are still poorly understood and therefore warrant systematic research. Here, we document novel epigenetic abnormalities in the mouse model of fetal alcohol spectrum disorder. Ethanol treatment of P7 mice, which induces activation of caspase 3, impaired DNA methylation through reduced DNA methyltransferases (DNMT1 and DNMT3A) levels. Inhibition of caspase 3 activity, before ethanol treatment, rescued DNMT1, DNMT3A proteins as well as DNA methylation levels. Blockade of histone methyltransferase (G9a) activity or cannabinoid receptor type-1 (CB1R), prior to ethanol treatment, which, respectively, inhibits or prevents activation of caspase 3, rescued the DNMT1 and DNMT3A proteins and DNA methylation. No reduction of DNMT1 and DNMT3A proteins and DNA methylation was found in P7 CB1R null mice, which exhibit no ethanol-induced activation of caspase 3. Together, these data demonstrate that ethanol-induced activation of caspase 3 impairs DNA methylation through DNMT1 and DNMT3A in the neonatal mouse brain, and such impairments are absent in CB1R null mice. Epigenetic events mediated by DNA methylation may be one of the essential mechanisms of ethanol teratogenesis. Schematic mechanism of action by which ethanol impairs DNA methylation. Studies have demonstrated that ethanol has the capacity to bring epigenetic changes to contribute to the development of fetal alcohol spectrum disorder (FASD). However, the mechanisms are not well studied. P7 ethanol induces the activation of caspase 3 and impairs DNA methylation through reduced DNA methyltransferases (DNMT1 and DNMT3A) proteins (→). The inhibition or genetic ablation of cannabinoid receptor type-1 or inhibition of histone methyltransferase (G9a) by Bix (-----) or inhibition of caspase 3 activation by Q- quinoline-Val-Asp(Ome)-CH2-O-phenoxy (Q-VD-OPh) () rescue loss of DNMT1, DNMT3A as well as DNA methylation. Hence, the putative DNMT1/DNMT3A/DNA methylation mechanism may have a potential regulatory role in FASD.
PMCID:4351764
PMID: 25487288
ISSN: 1471-4159
CID: 4142282

Pre-administration of G9a/GLP inhibitor during synaptogenesis prevents postnatal ethanol-induced LTP deficits and neurobehavioral abnormalities in adult mice

Subbanna, Shivakumar; Basavarajappa, Balapal S
It has been widely accepted that deficits in neuronal plasticity underlie the cognitive abnormalities observed in fetal alcohol spectrum disorder (FASD). Exposure of rodents to acute ethanol on postnatal day 7 (P7), which is equivalent to the third trimester of fetal development in human, induces long-term potentiation (LTP) and memory deficits in adult animals. However, the molecular mechanisms underlying these deficits are not well understood. Recently, we found that histone H3 dimethylation (H3K9me2), which is mediated by G9a (lysine dimethyltransferase), is responsible for the neurodegeneration caused by ethanol exposure in P7 mice. In addition, pharmacological inhibition of G9a prior to ethanol treatment at P7 normalized H3K9me2 proteins to basal levels and prevented neurodegeneration in neonatal mice. Here, we tested the hypothesis that pre-administration of G9a/GLP inhibitor (Bix-01294, Bix) in conditions in which ethanol induces neurodegeneration would be neuroprotective against P7 ethanol-induced deficits in LTP, memory and social recognition behavior in adult mice. Ethanol treatment at P7 induces deficits in LTP, memory and social recognition in adult mice and these deficits were prevented by Bix pretreatment at P7. Together, these findings provide physiological and behavioral evidence that the long-term harmful consequences on brain function after ethanol exposure with a third trimester equivalent have an epigenetic origin.
PMCID:4194267
PMID: 25017367
ISSN: 1090-2430
CID: 4142262

Ethanol exposure induces neonatal neurodegeneration by enhancing CB1R Exon1 histone H4K8 acetylation and up-regulating CB1R function causing neurobehavioral abnormalities in adult mice

Subbanna, Shivakumar; Nagre, Nagaraja N; Umapathy, Nagavedi S; Pace, Betty S; Basavarajappa, Balapal S
BACKGROUND:Ethanol exposure to rodents during postnatal day 7 (P7), which is comparable to the third trimester of human pregnancy, induces long-term potentiation and memory deficits. However, the molecular mechanisms underlying these deficits are still poorly understood. METHODS:In the present study, we explored the potential role of epigenetic changes at cannabinoid type 1 (CB1R) exon1 and additional CB1R functions, which could promote memory deficits in animal models of fetal alcohol spectrum disorder. RESULTS:We found that ethanol treatment of P7 mice enhances acetylation of H4 on lysine 8 (H4K8ace) at CB1R exon1, CB1R binding as well as the CB1R agonist-stimulated GTPγS binding in the hippocampus and neocortex, two brain regions that are vulnerable to ethanol at P7 and are important for memory formation and storage, respectively. We also found that ethanol inhibits cyclic adenosine monophosphate response element-binding protein (CREB) phosphorylation and activity-regulated cytoskeleton-associated protein (Arc) expression in neonatal and adult mice. The blockade or genetic deletion of CB1Rs prior to ethanol treatment at P7 rescued CREB phosphorylation and Arc expression. CB1R knockout mice exhibited neither ethanol-induced neurodegeneration nor inhibition of CREB phosphorylation or Arc expression. However, both neonatal and adult mice did exhibit enhanced CREB phosphorylation and Arc protein expression. P7 ethanol-treated adult mice exhibited impaired spatial and social recognition memory, which were prevented by the pharmacological blockade or deletion of CB1Rs at P7. CONCLUSIONS:Together, these findings suggest that P7 ethanol treatment induces CB1R expression through epigenetic modification of the CB1R gene, and that the enhanced CB1R function induces pCREB, Arc, spatial, and social memory deficits in adult mice.
PMCID:4376538
PMID: 25609594
ISSN: 1469-5111
CID: 4142292

Elevation of endogenous anandamide impairs LTP, learning, and memory through CB1 receptor signaling in mice

Basavarajappa, Balapal S; Nagre, Nagaraja N; Xie, Shan; Subbanna, Shivakumar
In rodents, many exogenous and endogenous cannabinoids, such as anandamide (AEA) and 2-arachidonyl glycerol (2-AG), have been shown to play an important role in certain hippocampal memory processes. However, the mechanisms by which endogenous AEA regulate this processes are not well understood. Here the effects of AEA on long-term potentiation (LTP), hippocampal-dependent learning and memory tasks, pERK1/2, pCaMKIV, and pCREB signaling events in both cannabinoid receptor type 1 (CB1R) wild-type (WT) and knockout (KO) mice were assessed following administration of URB597, an inhibitor of the fatty acid amide hydrolase (FAAH). Acute administration of URB597 enhanced AEA levels without affecting the levels of 2-AG or CB1R in the hippocampus and neocortex as compared to vehicle. In hippocampal slices, URB597 impaired LTP in CB1R WT but not in KO littermates. URB597 impaired object recognition, spontaneous alternation and spatial memory in the Y-maze test in CB1R WT mice but not in KO mice. Furthermore, URB597 enhanced ERK phosphorylation in WT without affecting total ERK levels in WT or KO mice. URB597 impaired CaMKIV and CREB phosphorylation in WT but not in KO mice. CB1R KO mice have a lower pCaMKIV/CaMKIV ratio and higher pCREB/CREB ratio as compared to WT littermates. Our results indicate that pharmacologically elevated AEA impair LTP, learning and memory and inhibit CaMKIV and CREB phosphorylation, via the activation of CB1Rs. Collectively, these findings also suggest that pharmacological elevation of AEA beyond normal concentrations is also detrimental for the underlying physiological responses.
PMCID:4077345
PMID: 24648181
ISSN: 1098-1063
CID: 4142252

Glutamatergic Transmission Aberration: A Major Cause of Behavioral Deficits in a Murine Model of Down's Syndrome

Kaur, Gurjinder; Sharma, Ajay; Xu, Wenjin; Gerum, Scott; Alldred, Melissa J; Subbanna, Shivakumar; Basavarajappa, Balapal S; Pawlik, Monika; Ohno, Masuo; Ginsberg, Stephen D; Wilson, Donald A; Guilfoyle, David N; Levy, Efrat
Trisomy 21, or Down's syndrome (DS), is the most common genetic cause of intellectual disability. Altered neurotransmission in the brains of DS patients leads to hippocampus-dependent learning and memory deficiency. Although genetic mouse models have provided important insights into the genes and mechanisms responsible for DS-specific changes, the molecular mechanisms leading to memory deficits are not clear. We investigated whether the segmental trisomy model of DS, Ts[Rb(12.1716)]2Cje (Ts2), exhibits hippocampal glutamatergic transmission abnormalities and whether these alterations cause behavioral deficits. Behavioral assays demonstrated that Ts2 mice display a deficit in nest building behavior, a measure of hippocampus-dependent nonlearned behavior, as well as dysfunctional hippocampus-dependent spatial memory tested in the object-placement and the Y-maze spontaneous alternation tasks. Magnetic resonance spectra measured in the hippocampi revealed a significantly lower glutamate concentration in Ts2 as compared with normal disomic (2N) littermates. The glutamate deficit accompanied hippocampal NMDA receptor1 (NMDA-R1) mRNA and protein expression level downregulation in Ts2 compared with 2N mice. In concert with these alterations, paired-pulse analyses suggested enhanced synaptic inhibition and/or lack of facilitation in the dentate gyrus of Ts2 compared with 2N mice. Ts2 mice also exhibited disrupted synaptic plasticity in slice recordings of the hippocampal CA1 region. Collectively, these findings imply that deficits in glutamate and NMDA-R1 may be responsible for impairments in synaptic plasticity in the hippocampus associated with behavioral dysfunctions in Ts2 mice. Thus, these findings suggest that glutamatergic deficits have a significant role in causing intellectual disabilities in DS.
PMCID:3983795
PMID: 24719089
ISSN: 0270-6474
CID: 881932

CB1 receptor-mediated signaling underlies the hippocampal synaptic, learning, and memory deficits following treatment with JWH-081, a new component of spice/K2 preparations

Basavarajappa, Balapal S; Subbanna, Shivakumar
Recently, synthetic cannabinoids have been sprayed onto plant material, which is subsequently packaged and sold as "Spice" or "K2" to mimic the effects of marijuana. A recent report identified several synthetic additives in samples of "Spice/K2", including JWH-081, a synthetic ligand for the cannabinoid receptor 1 (CB1). The deleterious effects of JWH-081 on brain function are not known, particularly on CB1 signaling, synaptic plasticity, learning and memory. Here, we evaluated the effects of JWH-081 on pCaMKIV, pCREB, and pERK1/2 signaling events followed by long-term potentiation (LTP), hippocampal-dependent learning and memory tasks using CB1 receptor wild-type (WT) and knockout (KO) mice. Acute administration of JWH-081 impaired CaMKIV phosphorylation in a dose-dependent manner, whereas inhibition of CREB phosphorylation in CB1 receptor WT mice was observed only at higher dose of JWH-081 (1.25 mg/kg). JWH-081 at higher dose impaired CaMKIV and CREB phosphorylation in a time-dependent manner in CB1 receptor WT mice but not in KO mice and failed to alter ERK1/2 phosphorylation. In addition, SR treated or CB1 receptor KO mice have a lower pCaMKIV/CaMKIV ratio and higher pCREB/CREB ratio compared with vehicle or WT littermates. In hippocampal slices, JWH-081 impaired LTP in CB1 receptor WT but not in KO littermates. Furthermore, JWH-081 at higher dose impaired object recognition, spontaneous alternation and spatial memory on the Y-maze in CB1 receptor WT mice but not in KO mice. Collectively our findings suggest that deleterious effects of JWH-081 on hippocampal function involves CB1 receptor mediated impairments in CaMKIV and CREB phosphorylation, LTP, learning and memory in mice.
PMCID:3959795
PMID: 24123667
ISSN: 1098-1063
CID: 4142222

Ethanol induced acetylation of histone at G9a exon1 and G9a-mediated histone H3 dimethylation leads to neurodegeneration in neonatal mice

Subbanna, S; Nagre, N N; Shivakumar, M; Umapathy, N S; Psychoyos, D; Basavarajappa, B S
The transient exposure of immature rodents to ethanol during postnatal day 7 (P7), comparable to a time point within the third trimester of human pregnancy, induces neurodegeneration. However, the molecular mechanisms underlying the deleterious effects of ethanol on the developing brain are poorly understood. In our previous study, we showed that a high dose administration of ethanol at P7 enhances G9a and leads to caspase-3-mediated degradation of dimethylated H3 on lysine 9 (H3K9me2). In this study, we investigated the potential role of epigenetic changes at G9a exon1, G9a-mediated H3 dimethylation on neurodegeneration and G9a-associated proteins in the P7 brain following exposure to a low dose of ethanol. We found that a low dose of ethanol induces mild neurodegeneration in P7 mice, enhances specific acetylation of H3 on lysine 14 (H3K14ace) at G9a exon1, G9a protein levels, augments the dimethylation of H3K9 and H3 lysine 27 (H3K27me2). However, neither dimethylated H3K9 nor K27 underwent degradation. Pharmacological inhibition of G9a activity prior to ethanol treatment prevented H3 dimethylation and neurodegeneration. Further, our immunoprecipitation data suggest that G9a directly associates with DNA methyltransferase (DNMT3A) and methyl-CpG-binding protein 2 (MeCP2). In addition, DNMT3A and MeCP2 protein levels were enhanced by a low dose of ethanol that was shown to induce mild neurodegeneration. Collectively, these epigenetic alterations lead to association of G9a, DNMT3A and MeCP2 to form a larger repressive complex and have a significant role in low-dose ethanol-induced neurodegeneration in the developing brain.
PMCID:3954640
PMID: 24300108
ISSN: 1873-7544
CID: 4142232

Major Enzymes of Endocannabinoid Metabolism

Basavarajappa, Balapal S
ORIGINAL:0014337
ISSN: 2213-9877
CID: 4142472

G9a-mediated histone methylation regulates ethanol-induced neurodegeneration in the neonatal mouse brain

Subbanna, Shivakumar; Shivakumar, Madhu; Umapathy, Nagavedi S; Saito, Mariko; Mohan, Panaiyur S; Kumar, Asok; Nixon, Ralph A; Verin, Alexander D; Psychoyos, Delphine; Basavarajappa, Balapal S
Rodent exposure to binge-like ethanol during postnatal day 7 (P7), which is comparable to the third trimester of human pregnancy, induces neuronal cell loss. However, the molecular mechanisms underlying these neuronal losses are still poorly understood. Here, we tested the possibility of histone methylation mediated by G9a (lysine dimethyltransferase) in regulating neuronal apoptosis in P7 mice exposed to ethanol. G9a protein expression, which is higher during embryogenesis and synaptogenic period compared to adult brain, is entirely confined to the cell nuclei in the developing brain. We found that ethanol treatment at P7, which induces apoptotic neurodegeneration in neonatal mice, enhanced G9a activity followed by increased histone H3 lysine 9 (H3K9me2) and 27 (H3K27me2) dimethylation. In addition, it appears that increased dimethylation of H3K9 makes it susceptible to proteolytic degradation by caspase-3 in conditions in which ethanol induces neurodegeneration. Further, pharmacological inhibition of G9a activity prior to ethanol treatment at P7 normalized H3K9me2, H3K27me2 and total H3 proteins to basal levels and prevented neurodegeneration in neonatal mice. Together, these data demonstrate that G9a mediated histone H3K9 and K27 dimethylation critically regulates ethanol-induced neurodegeneration in the developing brain. Furthermore, these findings reveal a novel link between G9a and neurodegeneration in the developing brain exposed to postnatal ethanol and may have a role in fetal alcohol spectrum disorders.
PMCID:3656439
PMID: 23396011
ISSN: 0969-9961
CID: 369642