Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:chent15

Total Results:

69


Overcoming Resistance to Dual Innate Immune and MEK Inhibition Downstream of KRAS

Kitajima, Shunsuke; Asahina, Hajime; Chen, Ting; Guo, Sujuan; Quiceno, Laura Gutierrez; Cavanaugh, Jillian D; Merlino, Ashley A; Tange, Shoichiro; Terai, Hideki; Kim, Jong Wook; Wang, Xiaoen; Zhou, Shan; Xu, Man; Wang, Stephen; Zhu, Zehua; Thai, Tran C; Takahashi, Chiaki; Wang, Yujin; Neve, Richard; Stinson, Susanna; Tamayo, Pablo; Watanabe, Hideo; Kirschmeier, Paul T; Wong, Kwok-Kin; Barbie, David A
Despite extensive efforts, oncogenic KRAS remains resistant to targeted therapy. Combined downstream RAL-TBK1 and MEK inhibition induces only transient lung tumor shrinkage in KRAS-driven genetically engineered mouse models (GEMMs). Using the sensitive KRAS;LKB1 (KL) mutant background, we identify YAP1 upregulation and a therapy-induced secretome as mediators of acquired resistance. This program is reversible, associated with H3K27 promoter acetylation, and suppressed by BET inhibition, resensitizing resistant KL cells to TBK1/MEK inhibition. Constitutive YAP1 signaling promotes intrinsic resistance in KRAS;TP53 (KP) mutant lung cancer. Intermittent treatment with the BET inhibitor JQ1 thus overcomes resistance to combined pathway inhibition in KL and KP GEMMs. Using potent and selective TBK1 and BET inhibitors we further develop an effective therapeutic strategy with potential translatability to the clinic.
PMID: 30205046
ISSN: 1878-3686
CID: 3277732

Palbociclib resistance confers dependence on an FGFR-MAP kinase-mTOR-driven pathway in KRAS-mutant non-small cell lung cancer

Haines, Eric; Chen, Ting; Kommajosyula, Naveen; Chen, Zhao; Herter-Sprie, Grit S; Cornell, Liam; Wong, Kwok-Kin; Shapiro, Geoffrey I
CDK4 is emerging as a target in KRAS-mutant non-small cell lung cancer (NSCLC). We demonstrate that KRAS-mutant NSCLC cell lines are initially sensitive to the CDK4/6 inhibitor palbociclib, but readily acquire resistance associated with increased expression of CDK6, D-type cyclins and cyclin E. Resistant cells also demonstrated increased ERK1/2 activity and sensitivity to MEK and ERK inhibitors. Moreover, MEK inhibition reduced the expression and activity of cell cycle proteins mediating palbociclib resistance. In resistant cells, ERK activated mTOR, driven in part by upstream FGFR1 signaling resulting from the extracellular secretion of FGF ligands. A genetically-engineered mouse model of KRAS-mutant NSCLC initially sensitive to palbociclib similarly developed acquired resistance with increased expression of cell cycle mediators, ERK1/2 and FGFR1. In this model, resistance was delayed with combined palbociclib and MEK inhibitor treatment. These findings implicate an FGFR1-MAP kinase-mTOR pathway resulting in increased expression of D-cyclins and CDK6 that confers palbociclib resistance and indicate that CDK4/6 inhibition acts to promote MAP kinase dependence.
PMCID:6114982
PMID: 30167080
ISSN: 1949-2553
CID: 3257152

NK cells mediate synergistic antitumor effects of combined inhibition of HDAC6 and BET in a SCLC preclinical model

Liu, Yan; Li, Yuyang; Liu, Shengwu; Adeegbe, Dennis O; Christensen, Camilla L; Quinn, Max M; Dries, Ruben; Han, Shiwei; Buczkowski, Kevin; Wang, Xiaoen; Chen, Ting; Gao, Peng; Zhang, Hua; Li, Fei; Hammerman, Peter S; Bradner, James E; Quayle, Steven N; Wong, Kwok-Kin
Small cell lung cancer (SCLC) has the highest malignancy among all lung cancers, exhibiting aggressive growth and early metastasis to distant sites. For 30 years, treatment options for SCLC have been limited to chemotherapy, warranting the need for more effective treatments. Frequent inactivation of TP53 and RB1 as well as histone dysmodifications in SCLC suggest that transcriptional and epigenetic regulations play a major role in SCLC disease evolution. Here we performed a synthetic lethal screen using the BET inhibitor JQ1 and an shRNA library targeting 550 epigenetic genes in treatment-refractory SCLC xenograft models and identified HDAC6 as a synthetic lethal target in combination with JQ1. Combined treatment of human and mouse SCLC cell line-derived xenograft tumors with the HDAC6 inhibitor ricolinostat (ACY-1215) and JQ1 demonstrated significant inhibition of tumor growth; this effect was abolished upon depletion of NK cells, suggesting that these innate immune lymphoid cells play a role in SCLC tumor treatment response. Collectively, these findings suggest a potential new treatment for recurrent SCLC.
PMID: 29760044
ISSN: 1538-7445
CID: 3121342

Targeting HER2 Aberrations in Non-Small Cell Lung Cancer with Osimertinib

Liu, Shengwu; Li, Shuai; Hai, Josephine; Wang, Xiaoen; Chen, Ting; Quinn, Max M; Gao, Peng; Zhang, Yanxi; Ji, Hongbin; Cross, Darren; Wong, Kwok-Kin
PURPOSE/OBJECTIVE:HER2 (or ERBB2) aberrations, including both amplification and mutations, have been classified as oncogenic drivers that contribute to 2-6 percent of lung adenocarcinomas. HER2 amplification is also an important mechanism for acquired resistance to EGFR tyrosine kinase inhibitors (TKIs). However, due to limited preclinical studies and clinical trials, currently there is still no available standard of care for lung cancer patients with HER2 aberrations. To fulfill the clinical need for targeting HER2 in non-small cell lung cancer (NSCLC) patients, we performed a comprehensive pre-clinical study to evaluate the efficacy of a third-generation TKI, osimertinib (AZD9291).  Experimental Design:Three genetically modified mouse models (GEMMs) mimicking individual HER2 alterations in NSCLC were generated and osimertinib was tested for its efficacy against these HER2 aberrations in vivo. RESULTS:Osimertinib treatment showed robust efficacy in HER2wt overexpression and EGFR del19/HER2 models but not in HER2 exon 20 insertion tumors. Interestingly, we further identified that combined treatment with osimertinib and the BET inhibitor JQ1 significantly increased the response rate in HER2-mutant NSCLC while JQ1 single treatment did not show efficacy. CONCLUSIONS:Overall, our data indicated robust anti-tumor efficacy of osimertinib against multiple HER2 aberrations in lung cancer, either as a single agent or in combination with JQ1. Our study provides a strong rationale for future clinical trials using osimertinib either alone or in combination with epigenetic drugs to target aberrant HER2 in NSCLC patients.
PMID: 29298799
ISSN: 1078-0432
CID: 2899562

Mechanisms and clinical activity of an EGFR and HER2 exon 20-selective kinase inhibitor in non-small cell lung cancer

Robichaux, Jacqulyne P; Elamin, Yasir Y; Tan, Zhi; Carter, Brett W; Zhang, Shuxing; Liu, Shengwu; Li, Shuai; Chen, Ting; Poteete, Alissa; Estrada-Bernal, Adriana; Le, Anh T; Truini, Anna; Nilsson, Monique B; Sun, Huiying; Roarty, Emily; Goldberg, Sarah B; Brahmer, Julie R; Altan, Mehmet; Lu, Charles; Papadimitrakopoulou, Vassiliki; Politi, Katerina; Doebele, Robert C; Wong, Kwok-Kin; Heymach, John V
Although most activating mutations of epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancers (NSCLCs) are sensitive to available EGFR tyrosine kinase inhibitors (TKIs), a subset with alterations in exon 20 of EGFR and HER2 are intrinsically resistant and lack an effective therapy. We used in silico, in vitro, and in vivo testing to model structural alterations induced by exon 20 mutations and to identify effective inhibitors. 3D modeling indicated alterations restricted the size of the drug-binding pocket, limiting the binding of large, rigid inhibitors. We found that poziotinib, owing to its small size and flexibility, can circumvent these steric changes and is a potent inhibitor of the most common EGFR and HER2 exon 20 mutants. Poziotinib demonstrated greater activity than approved EGFR TKIs in vitro and in patient-derived xenograft models of EGFR or HER2 exon 20 mutant NSCLC and in genetically engineered mouse models of NSCLC. In a phase 2 trial, the first 11 patients with NSCLC with EGFR exon 20 mutations receiving poziotinib had a confirmed objective response rate of 64%. These data identify poziotinib as a potent, clinically active inhibitor of EGFR and HER2 exon 20 mutations and illuminate the molecular features of TKIs that may circumvent steric changes induced by these mutations.
PMCID:5964608
PMID: 29686424
ISSN: 1546-170x
CID: 3053022

In vivo CRISPR screening unveils histone demethylase UTX as an important epigenetic regulator in lung tumorigenesis

Wu, Qibiao; Tian, Yahui; Zhang, Jian; Tong, Xinyuan; Huang, Hsinyi; Li, Shuai; Zhao, Hong; Tang, Ying; Yuan, Chongze; Wang, Kun; Fang, Zhaoyuan; Gao, Lei; Hu, Xin; Li, Fuming; Qin, Zhen; Yao, Shun; Chen, Ting; Chen, Haiquan; Zhang, Gong; Liu, Wanting; Sun, Yihua; Chen, Luonan; Wong, Kwok-Kin; Ge, Kai; Chen, Liang; Ji, Hongbin
Lung cancer is the leading cause of cancer-related death worldwide. Inactivation of tumor suppressor genes (TSGs) promotes lung cancer malignant progression. Here, we take advantage of the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated somatic gene knockout in a KrasG12D/+ mouse model to identify bona fide TSGs. From individual knockout of 55 potential TSGs, we identify five genes, including Utx, Ptip, Acp5, Acacb, and Clu, whose knockout significantly promotes lung tumorigenesis. These candidate genes are frequently down-regulated in human lung cancer specimens and significantly associated with survival in patients with lung cancer. Through crossing the conditional Utx knockout allele to the KrasG12D/+ mouse model, we further find that Utx deletion dramatically promotes lung cancer progression. The tumor-promotive effect of Utx knockout in vivo is mainly mediated through an increase of the EZH2 level, which up-regulates the H3K27me3 level. Moreover, the Utx-knockout lung tumors are preferentially sensitive to EZH2 inhibitor treatment. Collectively, our study provides a systematic screening of TSGs in vivo and identifies UTX as an important epigenetic regulator in lung tumorigenesis.
PMCID:5924887
PMID: 29632194
ISSN: 1091-6490
CID: 3037222

Profound Tissue Specificity in Proliferation Control Underlies Cancer Drivers and Aneuploidy Patterns

Sack, Laura Magill; Davoli, Teresa; Li, Mamie Z; Li, Yuyang; Xu, Qikai; Naxerova, Kamila; Wooten, Eric C; Bernardi, Ronald J; Martin, Timothy D; Chen, Ting; Leng, Yumei; Liang, Anthony C; Scorsone, Kathleen A; Westbrook, Thomas F; Wong, Kwok-Kin; Elledge, Stephen J
Genomics has provided a detailed structural description of the cancer genome. Identifying oncogenic drivers that work primarily through dosage changes is a current challenge. Unrestrained proliferation is a critical hallmark of cancer. We constructed modular, barcoded libraries of human open reading frames (ORFs) and performed screens for proliferation regulators in multiple cell types. Approximately 10% of genes regulate proliferation, with most performing in an unexpectedly highly tissue-specific manner. Proliferation drivers in a given cell type showed specific enrichment in somatic copy number changes (SCNAs) from cognate tumors and helped predict aneuploidy patterns in those tumors, implying that tissue-type-specific genetic network architectures underlie SCNA and driver selection in different cancers. In vivo screening confirmed these results. We report a substantial contribution to the catalog of SCNA-associated cancer drivers, identifying 147 amplified and 107 deleted genes as potential drivers, and derive insights about the genetic network architecture of aneuploidy in tumors.
PMID: 29576454
ISSN: 1097-4172
CID: 3011212

ER stress signaling promotes the survival of cancer 'persister cells' tolerant to EGFR tyrosine kinase inhibitors

Terai, Hideki; Kitajima, Shunsuke; Potter, Danielle S; Matsui, Yusuke; Gutierrez Quiceno, Laura; Chen, Ting; Kim, Tae-Jung; Rusan, Maria; Thai, Tran C; Piccioni, Federica; Donovan, Katherine A; Kwiatkowski, Nicholas; Hinohara, Kunihiko; Wei, Guo; Gray, Nathanael S; Fischer, Eric S; Wong, Kwok-Kin; Shimamura, Teppei; Letai, Anthony; Hammerman, Peter S; Barbie, David A
An increasingly recognized component of resistance to tyrosine kinase inhibitors (TKI) involves persistence of a drug-tolerant subpopulation of cancer cells which survive despite effective eradication of the majority of the cell population. Multiple groups have demonstrated that these drug-tolerant persister cells undergo transcriptional adaptation via an epigenetic state change that promotes cell survival. Because this mode of TKI drug tolerance appears to involve transcriptional addiction to specific genes and pathways, we hypothesized that systematic functional screening of EGFR TKI/transcriptional inhibitor combination therapy would yield important mechanistic insights and alternative drug escape pathways. We therefore performed a genome-wide CRISPR/Cas9 enhancer/suppressor screen in EGFR-dependent lung cancer PC9 cells treated with erlotinib + THZ1 (CDK7/12 inhibitor) combination therapy,a combination previously shown to suppress drug tolerant cells in this setting. As expected, suppression of multiple genes associated with transcriptional complexes (EP300, CREBBP and MED1) enhanced erlotinib/THZ1 synergy. Unexpectedly, we uncovered nearly every component of the recently described ufmylation pathway in the synergy suppressor group. Loss of ufmylation did not affect canonical downstream EGFR signaling. Instead, absence of this pathway triggered a protective unfolded protein response (UPR) associated with STING upregulation, promoting pro-tumorigenic inflammatory signaling but also unique dependence on Bcl-xL. These data reveal that dysregulation of ufmylation and ER stress comprise a previously unrecognized TKI drug tolerance pathway that engages survival signaling, with potentially important therapeutic implications.
PMCID:5815936
PMID: 29259014
ISSN: 1538-7445
CID: 2894022

CDK4/6 Inhibition Augments Antitumor Immunity by Enhancing T-cell Activation

Deng, Jiehui; Wang, Eric S; Jenkins, Russell W; Li, Shuai; Dries, Ruben; Yates, Kathleen; Chhabra, Sandeep; Huang, Wei; Liu, Hongye; Aref, Amir R; Ivanova, Elena; Paweletz, Cloud P; Bowden, Michaela; Zhou, Chensheng W; Herter-Sprie, Grit S; Sorrentino, Jessica A; Bisi, John E; Lizotte, Patrick H; Merlino, Ashley A; Quinn, Max M; Bufe, Lauren E; Yang, Annan; Zhang, Yanxi; Zhang, Hua; Gao, Peng; Chen, Ting; Cavanaugh, Megan E; Rode, Amanda J; Haines, Eric; Roberts, Patrick J; Strum, Jay C; Richards, William G; Lorch, Jochen H; Parangi, Sareh; Gunda, Viswanath; Boland, Genevieve M; Bueno, Raphael; Palakurthi, Sangeetha; Freeman, Gordon J; Ritz, Jerome; Haining, W Nicholas; Sharpless, Norman E; Arthanari, Haribabu; Shapiro, Geoffrey I; Barbie, David A; Gray, Nathanael S; Wong, Kwok-Kin
Immune checkpoint blockade, exemplified by antibodies targeting the PD-1 receptor, can induce durable tumor regressions in some patients. To enhance the efficacy of existing immunotherapies, we screened for small molecules capable of increasing the activity of T cells suppressed by PD-1. Here, we show that short-term exposure to small-molecule inhibitors of cyclin-dependent kinases 4 and 6 (CDK4/6) significantly enhances T-cell activation, contributing to antitumor effectsin vivo, due in part to the derepression of NFAT family proteins and their target genes, critical regulators of T-cell function. Although CDK4/6 inhibitors decrease T-cell proliferation, they increase tumor infiltration and activation of effector T cells. Moreover, CDK4/6 inhibition augments the response to PD-1 blockade in a novelex vivoorganotypic tumor spheroid culture system and in multiplein vivomurine syngeneic models, thereby providing a rationale for combining CDK4/6 inhibitors and immunotherapies.Significance:Our results define previously unrecognized immunomodulatory functions of CDK4/6 and suggest that combining CDK4/6 inhibitors with immune checkpoint blockade may increase treatment efficacy in patients. Furthermore, our study highlights the critical importance of identifying complementary strategies to improve the efficacy of immunotherapy for patients with cancer.Cancer Discov; 8(2); 216-33. ©2017 AACR.See related commentary by Balko and Sosman, p. 143See related article by Jenkins et al., p. 196This article is highlighted in the In This Issue feature, p. 127.
PMCID:5809273
PMID: 29101163
ISSN: 2159-8290
CID: 2957522

Suppression of adaptive responses to targeted cancer therapy by transcriptional repression

Rusan, Maria; Li, Kapsok; Li, Yvonne; Christensen, Camilla L; Abraham, Brian J; Kwiatkowski, Nicholas; Buczkowski, Kevin A; Bockorny, Bruno; Chen, Ting; Li, Shuai; Rhee, Kevin; Zhang, Haikuo; Chen, Wankun; Terai, Hideki; Tavares, Tiffany; Leggett, Alan L; Li, Tianxia; Wang, Yichen; Zhang, Tinghu; Kim, Tae-Jung; Hong, Sook-Hee; Poudel-Neupane, Neermala; Silkes, Michael; Mudianto, Tenny; Tan, Li; Shimamura, Takeshi; Meyerson, Matthew; Bass, Adam J; Watanabe, Hideo; Gray, Nathanael S; Young, Richard A; Wong, Kwok-Kin; Hammerman, Peter S
Acquired drug resistance is a major factor limiting the effectiveness of targeted cancer therapies. Targeting tumors with kinase inhibitors induces complex adaptive programs that promote the persistence of a fraction of the original cell population, facilitating the eventual outgrowth of inhibitor-resistant tumor clones. We show that the addition of a newly identified CDK7/12 inhibitor, THZ1, to targeted therapy enhances cell killing and impedes the emergence of drug-resistant cell populations in diverse cellular and in vivo cancer models. We propose that targeted therapy induces a state of transcriptional dependency in a subpopulation of cells poised to become drug tolerant, which THZ1 can exploit by blocking dynamic transcriptional responses, remodeling of enhancers and key signalling outputs required for tumor cell survival in the setting of targeted therapy. These findings suggest that the addition of THZ1 to targeted therapies is a promising broad-based strategy to hinder the emergence of drug-resistant cancer cell populations.
PMCID:5819998
PMID: 29054992
ISSN: 2159-8290
CID: 2742982