Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:cuddas01

Total Results:

45


Combinatorial patterns of histone acetylations and methylations in the human genome

Wang, Zhibin; Zang, Chongzhi; Rosenfeld, Jeffrey A; Schones, Dustin E; Barski, Artem; Cuddapah, Suresh; Cui, Kairong; Roh, Tae-Young; Peng, Weiqun; Zhang, Michael Q; Zhao, Keji
Histones are characterized by numerous posttranslational modifications that influence gene transcription. However, because of the lack of global distribution data in higher eukaryotic systems, the extent to which gene-specific combinatorial patterns of histone modifications exist remains to be determined. Here, we report the patterns derived from the analysis of 39 histone modifications in human CD4(+) T cells. Our data indicate that a large number of patterns are associated with promoters and enhancers. In particular, we identify a common modification module consisting of 17 modifications detected at 3,286 promoters. These modifications tend to colocalize in the genome and correlate with each other at an individual nucleosome level. Genes associated with this module tend to have higher expression, and addition of more modifications to this module is associated with further increased expression. Our data suggest that these histone modifications may act cooperatively to prepare chromatin for transcriptional activation
PMCID:2769248
PMID: 18552846
ISSN: 1546-1718
CID: 112090

Dynamic regulation of nucleosome positioning in the human genome

Schones, Dustin E; Cui, Kairong; Cuddapah, Suresh; Roh, Tae-Young; Barski, Artem; Wang, Zhibin; Wei, Gang; Zhao, Keji
The positioning of nucleosomes with respect to DNA plays an important role in regulating transcription. However, nucleosome mapping has been performed for only limited genomic regions in humans. We have generated genome-wide maps of nucleosome positions in both resting and activated human CD4+ T cells by direct sequencing of nucleosome ends using the Solexa high-throughput sequencing technique. We find that nucleosome phasing relative to the transcription start sites is directly correlated to RNA polymerase II (Pol II) binding. Furthermore, the first nucleosome downstream of a start site exhibits differential positioning in active and silent genes. TCR signaling induces extensive nucleosome reorganization in promoters and enhancers to allow transcriptional activation or repression. Our results suggest that H2A.Z-containing and modified nucleosomes are preferentially lost from the -1 nucleosome position. Our data provide a comprehensive view of the nucleosome landscape and its dynamic regulation in the human genome
PMID: 18329373
ISSN: 1097-4172
CID: 112091

Transcriptional enhancer factor 1 (TEF-1/TEAD1) mediates activation of IFITM3 gene by BRGl

Cuddapah, Suresh; Cui, Kairong; Zhao, Keji
The interferon inducible transmembrane (IFITM) proteins mediate several cellular processes such as homotypic cell adhesion functions of interferons (IFNs) and cellular anti-proliferative activities. We show that the BAF complex-mediated induction of IFITM3 is dependent on binding of the transcriptional enhancer factor 1 (TEF-1/TEAD1) to the M-CAT like elements of its promoter. TEF-1 knock-down reduced the BAF complex-mediated activation of IFITM3 promoter. In the absence of the BAF complex, TEF-1 is repressive to IFITM3 expression. The regulation of IFITM3 by TEF-1 demonstrates that TEF-1 dependent regulation is more widespread than its previously established role in the expression of muscle specific genes
PMCID:2278002
PMID: 18177740
ISSN: 0014-5793
CID: 112092

High-resolution profiling of histone methylations in the human genome

Barski, Artem; Cuddapah, Suresh; Cui, Kairong; Roh, Tae-Young; Schones, Dustin E; Wang, Zhibin; Wei, Gang; Chepelev, Iouri; Zhao, Keji
Histone modifications are implicated in influencing gene expression. We have generated high-resolution maps for the genome-wide distribution of 20 histone lysine and arginine methylations as well as histone variant H2A.Z, RNA polymerase II, and the insulator binding protein CTCF across the human genome using the Solexa 1G sequencing technology. Typical patterns of histone methylations exhibited at promoters, insulators, enhancers, and transcribed regions are identified. The monomethylations of H3K27, H3K9, H4K20, H3K79, and H2BK5 are all linked to gene activation, whereas trimethylations of H3K27, H3K9, and H3K79 are linked to repression. H2A.Z associates with functional regulatory elements, and CTCF marks boundaries of histone methylation domains. Chromosome banding patterns are correlated with unique patterns of histone modifications. Chromosome breakpoints detected in T cell cancers frequently reside in chromatin regions associated with H3K4 methylations. Our data provide new insights into the function of histone methylation and chromatin organization in genome function
PMID: 17512414
ISSN: 0092-8674
CID: 112093

The genomic landscape of histone modifications in human T cells

Roh, Tae-Young; Cuddapah, Suresh; Cui, Kairong; Zhao, Keji
To understand the molecular basis that supports the dynamic gene expression programs unique to T cells, we investigated the genomic landscape of activating histone modifications, including histone H3 K9/K14 diacetylation (H3K9acK14ac), H3 K4 trimethylation (H3K4me3), and the repressive histone modification H3 K27 trimethylation (H3K27me3) in primary human T cells. We show that H3K9acK14ac and H3K4me3 are associated with active genes required for T cell function and development, whereas H3K27me3 is associated with silent genes that are involved in development in other cell types. Unexpectedly, we find that 3,330 gene promoters are associated with all of these histone modifications. The gene expression levels are correlated with both the absolute and relative levels of the activating H3K4me3 and the repressive H3K27me3 modifications. Our data reveal that rapidly inducible genes are associated with the H3 acetylation and H3K4me3 modifications, suggesting they assume a chromatin structure poised for activation. In addition, we identified a subpopulation of chromatin regions that are associated with high levels of H3K4me3 and H3K27me3 but low levels of H3K9acK14ac. Therefore, these regions have a distinctive chromatin modification pattern and thus may represent a distinct class of chromatin domains
PMCID:1613230
PMID: 17043231
ISSN: 0027-8424
CID: 112094

Genome-wide mapping of histone modifications by GMAT

Cuddapah, Suresh; Zhao, Keji
PMID: 22530504
ISSN: 0264-8725
CID: 232482

Active chromatin domains are defined by acetylation islands revealed by genome-wide mapping

Roh, Tae-Young; Cuddapah, Suresh; Zhao, Keji
The identity and developmental potential of a human cell is specified by its epigenome that is largely defined by patterns of chromatin modifications including histone acetylation. Here we report high-resolution genome-wide mapping of diacetylation of histone H3 at Lys 9 and Lys 14 in resting and activated human T cells by genome-wide mapping technique (GMAT). Our data show that high levels of the H3 acetylation are detected in gene-rich regions. The chromatin accessibility and gene expression of a genetic domain is correlated with hyperacetylation of promoters and other regulatory elements but not with generally elevated acetylation of the entire domain. Islands of acetylation are identified in the intergenic and transcribed regions. The locations of the 46,813 acetylation islands identified in this study are significantly correlated with conserved noncoding sequences (CNSs) and many of them are colocalized with known regulatory elements in T cells. TCR signaling induces 4045 new acetylation loci that may mediate the global chromatin remodeling and gene activation. We propose that the acetylation islands are epigenetic marks that allow prediction of functional regulatory elements
PMCID:551575
PMID: 15706033
ISSN: 0890-9369
CID: 112095

A thermostable non-xylanolytic alpha-glucuronidase of Thermotoga maritima MSB8

Suresh, Cuddapah; Kitaoka, Motomitsu; Hayashi, Kiyoshi
A putative alpha-glucosidase belonging to glycosyl hydrolase family 4 of Thermotoga maritima (TM0752) was expressed in Escherichia coli and it was found that the recombinant protein (Agu4B) was a p-nitrophenyl alpha-D-glucuronopyranoside hydrolyzing alpha-glucuronidase, not alpha-glucosidase. It did not hydrolyze 4-O-methyl-D-glucuronoxylan or its fragment oligosaccharides. Agu4B was thermostable with an optimum temperature of 80 degrees C. It strictly required Mn(2+) and thiol compounds for its activity. The presence of NAD(+) slightly activated the enzyme. The amino acid sequence of Agu4B showed higher identity with Agu4A (another alpha-glucuronidase of T. maritima, 61%) than with AglA (alpha-glucosidase of T. maritima, 48%).
PMID: 14646194
ISSN: 0916-8451
CID: 2507562

Evidence that the putative alpha-glucosidase of Thermotoga maritima MSB8 is a pNP alpha-D-glucuronopyranoside hydrolyzing alpha-glucuronidase

Suresh, Cuddapah; Rus'd, Ahmed Abu; Kitaoka, Motomitsu; Hayashi, Kiyoshi
The gene (agu) encoding p-nitrophenyl alpha-D-glucuronopyranoside (pNP-GUA) hydrolyzing alpha-glucuronidase of the hyperthermophilic bacterium Thermotoga maritima was cloned and expressed in Escherichia coli. The recombinant enzyme was purified and characterized. The gene previously designated as putative alpha-glucosidase was found to code for a protein that had no alpha-glucosidase activity. It showed a rare activity profile with its ability to hydrolyze pNP-GUA, an activity not known in the alpha-glucuronidases from microbial sources. This is the first report on the occurrence of an alpha-glucuronidase which belongs to the family 4 of glycosyl hydrolases.
PMID: 12062428
ISSN: 0014-5793
CID: 2507572

Evidence that the glucoamylases and alpha-amylase secreted by Aspergillus niger are proteolytically processed products of a precursor enzyme

Dubey, A K; Suresh, C; Kavitha, R; Karanth, N G; Umesh-Kumar, S
A 125-kDa starch hydrolysing enzyme of Aspergillus niger characterised by its ability to dextrinise and saccharify starch [Suresh et al. (1999) Appl. Microbiol. Biotechnol. 51, 673-675] was also found to possess activity towards raw starch. Segregation of these activities in the 71-kDa glucoamylase and a 53-kDa alpha-amylase-like enzyme supported by antibody cross-reactivity studies and the isolation of mutants based on assay screens for the secretion of particular enzyme forms revealed the 125-kDa starch hydrolysing enzyme as their precursor. N-terminal sequence analysis further revealed that the 71-kDa glucoamylase was the N-terminal product of the precursor enzyme. Immunological cross reactivity of the 53-kDa amylase with antibodies raised against the precursor enzyme but not with the 71- and 61-kDa glucoamylase antibodies suggested that this enzyme activity is represented by the C-terminal fragment of the precursor. The N-terminal sequence of the 53-kDa protein showed similarity to the reported Taka amylase of Aspergillus oryzae. Antibody cross-reactivity to a 10-kDa non-enzymic peptide and a 61-kDa glucoamylase described these proteins as products of the 71-kDa glucoamylase. Identification of only the precursor starch hydrolysing enzyme in the protein extracts of fungal protoplasts suggested proteolytic processing in the cellular periplasmic space as the cause for the secretion of multiple forms of amylases by A. niger.
PMID: 10767433
ISSN: 0014-5793
CID: 2507522