Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:doyerv01

Total Results:

74


Detection of a temporal error triggers reconsolidation of amygdala-dependent memories

Diaz-Mataix, Lorenzo; Ruiz Martinez, Raquel Chacon; Schafe, Glenn E; LeDoux, Joseph E; Doyere, Valerie
Updating memories is critical for adaptive behaviors, but the rules and mechanisms governing that process are still not well defined. During a limited time window, the reactivation of consolidated aversive memories triggers memory lability and induces a plasticity-dependent reconsolidation process in the lateral nucleus of amygdala (LA) [1-5]. However, whether new information is necessary for initiating reconsolidation is not known. Here we show that changing the temporal relationship between the conditioned stimulus (CS) and unconditioned stimulus (US) during reactivation is sufficient to trigger synaptic plasticity and reconsolidation of an aversive memory in the LA. These findings demonstrate that time is a core part of the CS-US association and that new information must be presented during reactivation in order to trigger LA-dependent reconsolidation processes. In sum, this study provides new basic knowledge about the precise rules governing memory reconsolidation of aversive memories that might be used to treat traumatic memories.
PMCID:3606686
PMID: 23453952
ISSN: 0960-9822
CID: 334202

Time perception in children treated for a cerebellar medulloblastoma

Droit-Volet, Sylvie; Zelanti, Pierre S; Dellatolas, Georges; Kieffer, Virginie; El Massioui, Nicole; Brown, Bruce L; Doyere, Valerie; Provasi, Joelle; Grill, Jacques
The aim of the present study was to investigate temporal abilities in children treated by surgery for a malignant tumor in the cerebellum. Children with a diagnosed medulloblastoma and age-paired control children were given a temporal discrimination task (bisection task) and a temporal reproduction task with two duration ranges, one shorter than 1s and the other longer than 4s. The motor and cognitive capacities of these children were also assessed by a battery of age-adapted neuropsychological tests. The results did not show any significant difference in performance between the children with or without cerebellar lesions in the temporal discrimination task. It was only in the temporal reproduction task that the children with cerebellar lesions reproduced longer and more variable durations than the other children, but only for the short stimulus durations (
PMID: 23063729
ISSN: 1873-3379
CID: 1934342

It's time to fear! Interval timing in odor fear conditioning in rats

Shionoya, Kiseko; Hegoburu, Chloe; Brown, Bruce L; Sullivan, Regina M; Doyere, Valerie; Mouly, Anne-Marie
Time perception is crucial to goal attainment in humans and other animals, and interval timing also guides fundamental animal behaviors. Accumulating evidence has made it clear that in associative learning, temporal relations between events are encoded, and a few studies suggest this temporal learning occurs very rapidly. Most of these studies, however, have used methodologies that do not permit investigating the emergence of this temporal learning. In the present study we monitored respiration, ultrasonic vocalization (USV) and freezing behavior in rats in order to perform fine-grain analysis of fear responses during odor fear conditioning. In this paradigm an initially neutral odor (the conditioned stimulus, CS) predicted the arrival of an aversive unconditioned stimulus (US, footshock) at a fixed 20-s time interval. We first investigated the development of a temporal pattern of responding related to CS-US interval duration. The data showed that during acquisition with odor-shock pairings, a temporal response pattern of respiration rate was observed. Changing the CS-US interval duration from 20-s to 30-s resulted in a shift of the temporal response pattern appropriate to the new duration thus demonstrating that the pattern reflected the learning of the CS-US interval. A temporal pattern was also observed during a retention test 24 h later for both respiration and freezing measures, suggesting that the animals had stored the interval duration in long-term memory. We then investigated the role of intra-amygdalar dopaminergic transmission in interval timing. For this purpose, the D1 dopaminergic receptors antagonist SCH23390 was infused in the basolateral amygdala before conditioning. This resulted in an alteration of timing behavior, as reflected in differential temporal patterns between groups observed in a 24 h retention test off drug. The present data suggest that D1 receptor dopaminergic transmission within the amygdala is involved in temporal processing.
PMCID:3784976
PMID: 24098277
ISSN: 1662-5153
CID: 1934292

Modified impact of emotion on temporal discrimination in a transgenic rat model of Huntington disease

Faure, Alexis; Es-Seddiqi, Mouna; Brown, Bruce L; Nguyen, Hoa P; Riess, Olaf; von Horsten, Stephan; Le Blanc, Pascale; Desvignes, Nathalie; Bozon, Bruno; El Massioui, Nicole; Doyere, Valerie
Huntington's disease (HD) is characterized by triad of motor, cognitive, and emotional symptoms along with neuropathology in fronto-striatal circuit and limbic system including amygdala. Emotional alterations, which have a negative impact on patient well-being, represent some of the earliest symptoms of HD and might be related to the onset of the neurodegenerative process. In the transgenic rat model (tgHD rats), evidence suggest emotional alterations at the symptomatic stage along with neuropathology of the central nucleus of amygdala (CE). Studies in humans and animals demonstrate that emotion can modulate time perception. The impact of emotion on time perception has never been tested in HD, nor is it known if that impact could be part of the presymptomatic emotional phenotype of the pathology. The aim of this paper was to characterize the effect of emotion on temporal discrimination in presymptomatic tgHD animals. In the first experiment, we characterized the acute effect of an emotion (fear) conditioned stimulus on temporal discrimination using a bisection procedure, and tested its dependency upon an intact central amygdala. The second experiment was aimed at comparing presymptomatic homozygous transgenic animals at 7-months of age and their wild-type littermates (WT) in their performance on the modulation of temporal discrimination by emotion. Our principal findings show that (1) a fear cue produces a short-lived decrease of temporal precision after its termination, and (2) animals with medial CE lesion and presymptomatic tgHD animals demonstrate an alteration of this emotion-evoked temporal distortion. The results contribute to our knowledge about the presymptomatic phenotype of this HD rat model, showing susceptibility to emotion that may be related to dysfunction of the central nucleus of amygdala.
PMCID:3783849
PMID: 24133419
ISSN: 1662-5153
CID: 1934282

A naturally-occurring histone acetyltransferase inhibitor derived from Garcinia indica impairs newly acquired and reactivated fear memories

Maddox, Stephanie A; Watts, Casey S; Doyere, Valerie; Schafe, Glenn E
The study of the cellular and molecular mechanisms underlying the consolidation and reconsolidation of traumatic fear memories has progressed rapidly in recent years, yet few compounds have emerged that are readily useful in a clinical setting for the treatment of anxiety disorders such as post-traumatic stress disorder (PTSD). Here, we use a combination of biochemical, behavioral, and neurophysiological methods to systematically investigate the ability of garcinol, a naturally-occurring histone acetyltransferase (HAT) inhibitor derived from the rind of the fruit of the Kokum tree (Garcina indica), to disrupt the consolidation and reconsolidation of Pavlovian fear conditioning, a widely studied rodent model of PTSD. We show that local infusion of garcinol into the rat lateral amygdala (LA) impairs the training and retrieval-related acetylation of histone H3 in the LA. Further, we show that either intra-LA or systemic administration of garcinol within a narrow window after either fear conditioning or fear memory retrieval significantly impairs the consolidation and reconsolidation of a Pavlovian fear memory and associated neural plasticity in the LA. Our findings suggest that a naturally-occurring compound derived from the diet that regulates chromatin function may be useful in the treatment of newly acquired or recently reactivated traumatic memories.
PMCID:3549978
PMID: 23349897
ISSN: 1932-6203
CID: 1934322

Interval timing and time-based decision making

Meck, Warren H; Doyere, Valerie; Gruart, Agnes
PMCID:3315844
PMID: 22479240
ISSN: 1662-5145
CID: 1934352

Sensory-specific associations stored in the lateral amygdala allow for selective alteration of fear memories

Diaz-Mataix, Lorenzo; Debiec, Jacek; Ledoux, Joseph E; Doyere, Valerie
Consolidated long-term fear memories become labile and can be disrupted after being reactivated by the presentation of the unconditioned stimulus (US). Whether this is due to an alteration of the conditioned stimulus (CS) representation in the lateral amygdala (LA) is not known. Here, we show in rats that fear memory reactivation through presentation of the aversive US, like CS presentation, triggers a process which, when disrupted, results in a selective depotentiation of CS-evoked neural responses in the LA in correlation with a selective suppression of CS-elicited fear memory. Thus, an aversive US triggers the reconsolidation of its associated predictor representation in LA. This new finding suggests that sensory-specific associations are stored in the lateral amygdala, allowing for their selective alteration by either element of the association
PMCID:3175641
PMID: 21715618
ISSN: 1529-2401
CID: 134737

Behavioral and in vivo electrophysiological evidence for presymptomatic alteration of prefrontostriatal processing in the transgenic rat model for huntington disease

Hohn, Sophie; Dallerac, Glenn; Faure, Alexis; Urbach, Yvonne K; Nguyen, Huu Phuc; Riess, Olaf; von Horsten, Stephan; Le Blanc, Pascale; Desvignes, Nathalie; El Massioui, Nicole; Brown, Bruce L; Doyere, Valerie
Cognitive decline precedes motor symptoms in Huntington disease (HD). A transgenic rat model for HD carrying only 51 CAG repeats recapitulates the late-onset HD phenotype. Here, we assessed prefrontostriatal function in this model through both behavioral and electrophysiological assays. Behavioral examination consisted in a temporal bisection task within a supra-second range (2 vs.8 s), which is thought to involve prefrontostriatal networks. In two independent experiments, the behavioral analysis revealed poorer temporal sensitivity as early as 4 months of age, well before detection of overt motor deficits. At a later symptomatic age, animals were impaired in their temporal discriminative behavior. In vivo recording of field potentials in the dorsomedial striatum evoked by stimulation of the prelimbic cortex were studied in 4- to 5-month-old rats. Input/output curves, paired-pulse function, and plasticity induced by theta-burst stimulation (TBS) were assessed. Results showed an altered plasticity, with higher paired-pulse facilitation, enhanced short-term depression, as well as stronger long-term potentiation after TBS in homozygous transgenic rats. Results from the heterozygous animals mostly fell between wild-type and homozygous transgenic rats. Our results suggest that normal plasticity in prefrontostriatal circuits may be necessary for reliable and precise timing behavior. Furthermore, the present study provides the first behavioral and electrophysiological evidence of a presymptomatic alteration of prefrontostriatal processing in an animal model for Huntington disease and suggests that supra-second timing may be the earliest cognitive dysfunction in HD.
PMID: 21677182
ISSN: 1529-2401
CID: 1934372

Altered emotional and motivational processing in the transgenic rat model for Huntington's disease

Faure, A; Hohn, S; Von Horsten, S; Delatour, B; Raber, K; Le Blanc, P; Desvignes, N; Doyere, V; El Massioui, N
Huntington disease (HD) is caused by an expansion of CAG repeat in the Huntingtin gene. Patients demonstrate a triad of motor, cognitive and psychiatric symptoms. A transgenic rat model (tgHD rats) carrying 51 CAG repeats demonstrate progressive striatal degeneration and polyglutamine aggregates in limbic structures. In this model, emotional function has only been investigated through anxiety studies. Our aim was to extend knowledge on emotional and motivational function in symptomatic tgHD rats. We subjected tgHD and wild-type rats to behavioral protocols testing motor, emotional, and motivational abilities. From 11 to 15 months of age, animals were tested in emotional perception of sucrose using taste reactivity, acquisition, extinction, and re-acquisition of discriminative Pavlovian fear conditioning as well as reactivity to changes in reinforcement values in a runway Pavlovian approach task. Motor tests detected the symptomatic status of tgHD animals from 11 months of age. In comparison to wild types, transgenic animals exhibited emotional blunting of hedonic perception for intermediate sucrose concentration. Moreover, we found emotional alterations with better learning and re-acquisition of discriminative fear conditioning due to a higher level of conditioned fear to aversive stimuli, and hyper-reactivity to a negative hedonic shift in reinforcement value interpreted in term of greater frustration. Neuropathological assessment in the same animals showed a selective shrinkage of the central nucleus of the amygdala. Our results showing emotional blunting and hypersensitivity to negative emotional situations in symptomatic tgHD animals extend the face validity of this model regarding neuropsychiatric symptoms as seen in manifest HD patients, and suggest that some of these symptoms may be related to amygdala dysfunction.
PMID: 21111837
ISSN: 1095-9564
CID: 1934392

The neural cell adhesion molecule-derived peptide FGL facilitates long-term plasticity in the dentate gyrus in vivo

Dallerac, Glenn; Zerwas, Meike; Novikova, Tatiana; Callu, Delphine; Leblanc-Veyrac, Pascale; Bock, Elisabeth; Berezin, Vladimir; Rampon, Claire; Doyere, Valerie
The neural cell adhesion molecule (NCAM) is known to play a role in developmental and structural processes but also in synaptic plasticity and memory of the adult animal. Recently, FGL, a NCAM mimetic peptide that binds to the Fibroblast Growth Factor Receptor 1 (FGFR-1), has been shown to have a beneficial impact on normal memory functioning, as well as to rescue some pathological cognitive impairments. Whether its facilitating impact may be mediated through promoting neuronal plasticity is not known. The present study was therefore designed to test whether FGL modulates the induction and maintenance of synaptic plasticity in the dentate gyrus (DG) in vivo. For this, we first assessed the effect of the FGL peptide on synaptic functions at perforant path-dentate gyrus synapses in the anesthetized rat. FGL, or its control inactive peptide, was injected locally 60 min before applying high-frequency stimulation (HFS) to the medial perforant path. The results suggest that although FGL did not alter basal synaptic transmission, it facilitated both the induction and maintenance of LTP. Interestingly, FGL also modified the heterosynaptic plasticity observed at the neighboring lateral perforant path synapses. The second series of experiments, using FGL intracerebroventricular infusion in the awake animal, confirmed its facilitating effect on LTP for up to 24 h. Our data also suggest that FGL could alter neurogenesis associated with LTP. In sum, these results show for the first time that enhancing NCAM functions by mimicking its heterophilic interaction with FGFR facilitates hippocampal synaptic plasticity in the awake, freely moving animal.
PMID: 21508096
ISSN: 1549-5485
CID: 1934382