Searched for: in-biosketch:yes
person:froemr01
Dynamics of auditory cortical activity during behavioural engagement and auditory perception
Carcea, Ioana; Insanally, Michele N; Froemke, Robert C
Behavioural engagement can enhance sensory perception. However, the neuronal mechanisms by which behavioural states affect stimulus perception remain poorly understood. Here we record from single units in auditory cortex of rats performing a self-initiated go/no-go auditory task. Self-initiation transforms cortical tuning curves and bidirectionally modulates stimulus-evoked activity patterns and improves auditory detection and recognition. Trial self-initiation decreases the rate of spontaneous activity in the majority of recorded cells. Optogenetic disruption of cortical activity before and during tone presentation shows that these changes in evoked and spontaneous activity are important for sound perception. Thus, behavioural engagement can prepare cortical circuits for sensory processing by dynamically changing sound representation and by controlling the pattern of spontaneous activity.
PMCID:5309852
PMID: 28176787
ISSN: 2041-1723
CID: 2436212
Parallel processing by cortical inhibition enables context-dependent behavior
Kuchibhotla, Kishore V; Gill, Jonathan V; Lindsay, Grace W; Papadoyannis, Eleni S; Field, Rachel E; Sten, Tom A Hindmarsh; Miller, Kenneth D; Froemke, Robert C
Physical features of sensory stimuli are fixed, but sensory perception is context dependent. The precise mechanisms that govern contextual modulation remain unknown. Here, we trained mice to switch between two contexts: passively listening to pure tones and performing a recognition task for the same stimuli. Two-photon imaging showed that many excitatory neurons in auditory cortex were suppressed during behavior, while some cells became more active. Whole-cell recordings showed that excitatory inputs were affected only modestly by context, but inhibition was more sensitive, with PV+, SOM+, and VIP+ interneurons balancing inhibition and disinhibition within the network. Cholinergic modulation was involved in context switching, with cholinergic axons increasing activity during behavior and directly depolarizing inhibitory cells. Network modeling captured these findings, but only when modulation coincidently drove all three interneuron subtypes, ruling out either inhibition or disinhibition alone as sole mechanism for active engagement. Parallel processing of cholinergic modulation by cortical interneurons therefore enables context-dependent behavior.
PMCID:5191967
PMID: 27798631
ISSN: 1546-1726
CID: 2297142
A physiological and behavioral system for hearing restoration with cochlear implants
King, Julia; Shehu, Ina; Roland, J Thomas Jr; Svirsky, Mario A; Froemke, Robert C
Cochlear implants are neuroprosthetic devices that provide hearing to deaf patients, although outcomes are highly variable even with prolonged training and use. The central auditory system must process cochlear implant signals, but it is unclear how neural circuits adapt - or fail to adapt - to such inputs. Understanding these mechanisms is required for development of next-generation neuroprosthetics that interface with existing neural circuits and enable synaptic plasticity to improve perceptual outcomes. Here we describe a new system for cochlear implant insertion, stimulation, and behavioral training in rats. Animals were first ensured to have significant hearing loss via physiological and behavioral criteria. We developed a surgical approach for multi-channel (2-channel or 8-channel) array insertion, comparable to implantation procedures and depth in humans. Peripheral and cortical responses to stimulation were used to objectively program the implant. Animals fitted with implants learned to use them for an auditory-dependent task that assesses frequency detection and recognition, in a background of environmentally- and self-generated noise, and ceased responding appropriately to sounds when the implant was temporarily inactivated. This physiologically-calibrated and behaviorally-validated system provides a powerful opportunity to study the neural basis of neuroprosthetic device use and plasticity.
PMCID:4995281
PMID: 27281743
ISSN: 1522-1598
CID: 2136552
Oxytocin Enhances Social Recognition by Modulating Cortical Control of Early Olfactory Processing
Oettl, Lars-Lennart; Ravi, Namasivayam; Schneider, Miriam; Scheller, Max F; Schneider, Peggy; Mitre, Mariela; da Silva Gouveia, Miriam; Froemke, Robert C; Chao, Moses V; Young, W Scott; Meyer-Lindenberg, Andreas; Grinevich, Valery; Shusterman, Roman; Kelsch, Wolfgang
Oxytocin promotes social interactions and recognition of conspecifics that rely on olfaction in most species. The circuit mechanisms through which oxytocin modifies olfactory processing are incompletely understood. Here, we observed that optogenetically induced oxytocin release enhanced olfactory exploration and same-sex recognition of adult rats. Consistent with oxytocin's function in the anterior olfactory cortex, particularly in social cue processing, region-selective receptor deletion impaired social recognition but left odor discrimination and recognition intact outside a social context. Oxytocin transiently increased the drive of the anterior olfactory cortex projecting to olfactory bulb interneurons. Cortical top-down recruitment of interneurons dynamically enhanced the inhibitory input to olfactory bulb projection neurons and increased the signal-to-noise of their output. In summary, oxytocin generates states for optimized information extraction in an early cortical top-down network that is required for social interactions with potential implications for sensory processing deficits in autism spectrum disorders.
PMCID:4860033
PMID: 27112498
ISSN: 1097-4199
CID: 2092392
Oxytocin enables maternal behavior by balancing cortical inhibition [Meeting Abstract]
Marlin, B J; Mitre, M; Carcea, L; D'Amour, J A; Schiavo, J; Chao, M V; Froemke, R C
Background: Oxytocin is essential for social interactions and maternal behavior. However, little is known about how oxytocin modulates neural circuits to improve social and maternal outcomes. We describe a synaptic mechanism by which oxytocin enhances signal-to-noise ratio in left primary auditory cortex to improve mouse maternal behavior. Methods: We performed electrophysiological recordings, and used anatomical, optogenetic and behavioral techniques to examine the role of oxytocin in maternal behavior in wild-type C57BL/6 and Oxytocin-IRES-Cre mice. Results: Virgins females, who do not initially retrieve distressed pups, rapidly expressed retrieval behavior after receiving oxytocin under dam and pups co-housing conditions. Retrieval onset was accelerated in 20/36 mice receiving systemic oxytocin and in 5/7 mice receiving optogenetic stimulation (P=0.03, 0.05, respectively; Fisher's two-tailed exact test). To confirm regional sites of action subserving improved maternal behavior, we generated novel antibodies that bind to the mouse oxytocin receptor. Oxytocin receptors were preferentially expressed in the left auditory cortex (19% left cells, 14% right cells, n=21, P=0.001). Finally, we utilitzed in vivo whole-cell recordings to measure spiking/synaptic responses to pup calls. Pup call responses were lateralized, with co-tuned/temporally-precise responses in left auditory cortex of maternally-experienced but not maternal-naive adults. Pairing calls with oxytocin enhanced call-evoked responses in virgin dams by balancing the magnitude/ timing of inhibition with excitation, transitioning the auditory cortex from a virgin-like state to a maternal state. Conclusions: Our study provides a biological basis for the lateralization of vocal processing and emergence of experience-based social learning. These studies inform behavioral therapies involving oxytocin administration
EMBASE:72256862
ISSN: 0006-3223
CID: 2103542
Excitation-Transcription Coupling in Parvalbumin-Positive Interneurons Employs a Novel CaM Kinase-Dependent Pathway Distinct from Excitatory Neurons
Cohen, Samuel M; Ma, Huan; Kuchibhotla, Kishore V; Watson, Brendon O; Buzsaki, Gyorgy; Froemke, Robert C; Tsien, Richard W
Properly functional CNS circuits depend on inhibitory interneurons that in turn rely upon activity-dependent gene expression for morphological development, connectivity, and excitatory-inhibitory coordination. Despite its importance, excitation-transcription coupling in inhibitory interneurons is poorly understood. We report that PV+ interneurons employ a novel CaMK-dependent pathway to trigger CREB phosphorylation and gene expression. As in excitatory neurons, voltage-gated Ca2+ influx through CaV1 channels triggers CaM nuclear translocation via local Ca2+ signaling. However, PV+ interneurons are distinct in that nuclear signaling is mediated by gammaCaMKI, not gammaCaMKII. CREB phosphorylation also proceeds with slow, sigmoid kinetics, rate-limited by paucity of CaMKIV, protecting against saturation of phospho-CREB in the face of higher firing rates and bigger Ca2+ transients. Our findings support the generality of CaM shuttling to drive nuclear CaMK activity, and they are relevant to disease pathophysiology, insofar as dysfunction of PV+ interneurons and molecules underpinning their excitation-transcription coupling both relate to neuropsychiatric disease.
PMCID:4866871
PMID: 27041500
ISSN: 1097-4199
CID: 2065982
A low-cost, multiplexed muECoG system for high-density recordings in freely moving rodents
Insanally, Michele; Trumpis, Michael; Wang, Charles; Chiang, Chia-Han; Woods, Virginia; Palopoli-Trojani, Kay; Bossi, Silvia; Froemke, Robert C; Viventi, Jonathan
OBJECTIVE: Micro-electrocorticography (muECoG) offers a minimally invasive neural interface with high spatial resolution over large areas of cortex. However, electrode arrays with many contacts that are individually wired to external recording systems are cumbersome and make recordings in freely behaving rodents challenging. We report a novel high-density 60-electrode system for muECoG recording in freely moving rats. APPROACH: Multiplexed headstages overcome the problem of wiring complexity by combining signals from many electrodes to a smaller number of connections. We have developed a low-cost, multiplexed recording system with 60 contacts at 406 mum spacing. We characterized the quality of the electrode signals using multiple metrics that tracked spatial variation, evoked-response detectability, and decoding value. Performance of the system was validated both in anesthetized animals and freely moving awake animals. MAIN RESULTS: We recorded muECoG signals over the primary auditory cortex, measuring responses to acoustic stimuli across all channels. Single-trial responses had high signal-to-noise ratios (SNR) (up to 25 dB under anesthesia), and were used to rapidly measure network topography within approximately 10 s by constructing all single-channel receptive fields in parallel. We characterized evoked potential amplitudes and spatial correlations across the array in the anesthetized and awake animals. Recording quality in awake animals was stable for at least 30 days. Finally, we used these responses to accurately decode auditory stimuli on single trials. SIGNIFICANCE: This study introduces (1) a muECoG recording system based on practical hardware design and (2) a rigorous analytical method for characterizing the signal characteristics of muECoG electrode arrays. This methodology can be applied to evaluate the fidelity and lifetime of any muECoG electrode array. Our muECoG-based recording system is accessible and will be useful for studies of perception and decision-making in rodents, particularly over the entire time course of behavioral training and learning.
PMCID:4894303
PMID: 26975462
ISSN: 1741-2552
CID: 2031892
A New Population of Parvocellular Oxytocin Neurons Controlling Magnocellular Neuron Activity and Inflammatory Pain Processing
Eliava, Marina; Melchior, Meggane; Knobloch-Bollmann, H Sophie; Wahis, Jerome; da Silva Gouveia, Miriam; Tang, Yan; Ciobanu, Alexandru Cristian; Triana Del Rio, Rodrigo; Roth, Lena C; Althammer, Ferdinand; Chavant, Virginie; Goumon, Yannick; Gruber, Tim; Petit-Demouliere, Nathalie; Busnelli, Marta; Chini, Bice; Tan, Linette L; Mitre, Mariela; Froemke, Robert C; Chao, Moses V; Giese, Gunter; Sprengel, Rolf; Kuner, Rohini; Poisbeau, Pierrick; Seeburg, Peter H; Stoop, Ron; Charlet, Alexandre; Grinevich, Valery
Oxytocin (OT) is a neuropeptide elaborated by the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei. Magnocellular OT neurons of these nuclei innervate numerous forebrain regions and release OT into the blood from the posterior pituitary. The PVN also harbors parvocellular OT cells that project to the brainstem and spinal cord, but their function has not been directly assessed. Here, we identified a subset of approximately 30 parvocellular OT neurons, with collateral projections onto magnocellular OT neurons and neurons of deep layers of the spinal cord. Evoked OT release from these OT neurons suppresses nociception and promotes analgesia in an animal model of inflammatory pain. Our findings identify a new population of OT neurons that modulates nociception in a two tier process: (1) directly by release of OT from axons onto sensory spinal cord neurons and inhibiting their activity and (2) indirectly by stimulating OT release from SON neurons into the periphery.
PMCID:5679079
PMID: 26948889
ISSN: 1097-4199
CID: 2024162
Effective Modulation of Male Aggression through Lateral Septum to Medial Hypothalamus Projection
Wong, Li Chin; Wang, Li; D'Amour, James A; Yumita, Tomohiro; Chen, Genghe; Yamaguchi, Takashi; Chang, Brian C; Bernstein, Hannah; You, Xuedi; Feng, James E; Froemke, Robert C; Lin, Dayu
Aggression is a prevalent behavior in the animal kingdom that is used to settle competition for limited resources. Given the high risk associated with fighting, the central nervous system has evolved an active mechanism to modulate its expression. Lesioning the lateral septum (LS) is known to cause "septal rage," a phenotype characterized by a dramatic increase in the frequency of attacks. To understand the circuit mechanism of LS-mediated modulation of aggression, we examined the influence of LS input on the cells in and around the ventrolateral part of the ventromedial hypothalamus (VMHvl)-a region required for male mouse aggression. We found that the inputs from the LS inhibited the attack-excited cells but surprisingly increased the overall activity of attack-inhibited cells. Furthermore, optogenetic activation of the projection from LS cells to the VMHvl terminated ongoing attacks immediately but had little effect on mounting. Thus, LS projection to the ventromedial hypothalamic area represents an effective pathway for suppressing male aggression.
PMCID:4783202
PMID: 26877081
ISSN: 1879-0445
CID: 1949592
A Distributed Network for Social Cognition Enriched for Oxytocin Receptors
Mitre, Mariela; Marlin, Bianca J; Schiavo, Jennifer K; Morina, Egzona; Norden, Samantha E; Hackett, Troy A; Aoki, Chiye J; Chao, Moses V; Froemke, Robert C
Oxytocin is a neuropeptide important for social behaviors such as maternal care and parent-infant bonding. It is believed that oxytocin receptor signaling in the brain is critical for these behaviors, but it is unknown precisely when and where oxytocin receptors are expressed or which neural circuits are directly sensitive to oxytocin. To overcome this challenge, we generated specific antibodies to the mouse oxytocin receptor and examined receptor expression throughout the brain. We identified a distributed network of female mouse brain regions for maternal behaviors that are especially enriched for oxytocin receptors, including the piriform cortex, the left auditory cortex, and CA2 of the hippocampus. Electron microscopic analysis of the cerebral cortex revealed that oxytocin receptors were mainly expressed at synapses, as well as on axons and glial processes. Functionally, oxytocin transiently reduced synaptic inhibition in multiple brain regions and enabled long-term synaptic plasticity in the auditory cortex. Thus modulation of inhibition may be a general mechanism by which oxytocin can act throughout the brain to regulate parental behaviors and social cognition. SIGNIFICANCE STATEMENT: Oxytocin is an important peptide hormone involved in maternal behavior and social cognition, but it has been unclear what elements of neural circuits express oxytocin receptors due to the paucity of suitable antibodies. Here, we developed new antibodies to the mouse oxytocin receptor. Oxytocin receptors were found in discrete brain regions and at cortical synapses for modulating excitatory-inhibitory balance and plasticity. These antibodies should be useful for future studies of oxytocin and social behavior.
PMCID:4764667
PMID: 26911697
ISSN: 1529-2401
CID: 1964812