Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:hainek01

Total Results:

79


Transforming growth factor beta 1, a potent chemoattractant for human neutrophils, bypasses classic signal-transduction pathways

Reibman J; Meixler S; Lee TC; Gold LI; Cronstein BN; Haines KA; Kolasinski SL; Weissmann G
Transforming growth factor beta 1 (TGF-beta 1), a homodimeric polypeptide (Mr 25,000), derives from inflammatory cells and acts as a chemoattractant for monocytes and fibroblasts. We report here that TGF-beta 1 is also the most potent chemoattractant yet described for human peripheral blood neutrophils. Recombinant TGF-beta 1 elicited dose-dependent directed migration of neutrophils under agarose that was inhibited in the presence of a neutralizing antibody to TGF-beta 1. Maximal chemotaxis was evoked by TGF-beta 1 at femtomolar concentrations, whereas conventional chemoattractants act at nanomolar concentrations: on a molar basis, TGF-beta 1 was 150,000 times more potent than fMet-Leu-Phe. In contrast, TGF-beta 1 provoked neither exocytosis nor the production of superoxide by neutrophils. We further analyzed the mechanism by which TGF-beta 1 elicits chemotaxis (GTPase activity, [Ca2+], and actin polymerization). In contrast to the conventional chemoattractant fMet-Leu-Phe, TGF-beta neither activated classic heterotrimeric guanine nucleotide-binding proteins nor provoked global mobilization of intracellular Ca2+. Chemoattraction by both fMet-Leu-Phe and TGF-beta 1 was inhibited by cycloheximide and actinomycin D. Moreover, chemotaxis in response to TGF-beta 1 was associated with the polymerization of actin. The selectivity and potency of TGF-beta 1 as a chemoattractant suggest that it elicits directed cell migration by means of a pathway that depends not on classic intracellular signals but on protein synthesis
PMCID:52177
PMID: 1650483
ISSN: 0027-8424
CID: 9831

Effects of protein I of Neisseria gonorrhoeae on neutrophil activation: generation of diacylglycerol from phosphatidylcholine via a specific phospholipase C is associated with exocytosis

Haines KA; Reibman J; Tang XY; Blake M; Weissmann G
Upon engagement of chemoattractant receptors, neutrophils generate inositol trisphosphate and diacylglycerol (DG) by means of a phosphatidylinositol-specific phospholipase C (PI-PLC) which is regulated by a GTP-binding protein(s). We have previously reported (Reibman, J., H. M. Korchak, L. B. Vosshall, K. A. Haines, A. M. Rich, and G. Weissmann. 1988. J. Biol. Chem. 263:6322-6328) a biphasic rise in DG after exposure of neutrophils to the chemoattractant FMLP: a rapid (less than or equal to 15 s) phase ('triggering') and a slow (greater than or equal to 30 s) phase ('activation'). These derive from distinct intracellular lipid pools. To study the source of rapid and slow DG, we have used a unique probe, protein I, a porin that is the major outer membrane protein of Neisseria gonorrhoeae. Treatment of neutrophils with protein I inhibits exocytosis and homotypic cell adhesion provoked by FMLP without inhibiting assembly of the NADPH oxidase responsible for O2-. generation. DG turnover in PMN labeled with [3H]arachidonate and [14C]glycerol was profoundly altered by protein I. Whereas the rapid peak of DG was only modestly diminished (FMLP vs. FMLP plus protein I = DG labeled with [3H]arachidonic acid (3H-a.a.-DG): 142 +/- 14% SEM vs. 125 +/- 22%; DG labeled with the glycerol backbone with [14C]glycerol (D-14C-G): 125 +/- 10% SEM vs. 107 +/- 8.5% SEM), the slow rise in both 3H-a.a.-DG and D-14C-G was essentially abolished. Moreover, treatment of neutrophils with 4-4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), which, like protein I, inhibits exocytosis without affecting O2-. generation also inhibited slow DG. However, protein phosphorylation and dephosphorylation (47phox, 66phox) were unaffected in the absence of slow DG. To determine the source of the slow DG, we have analyzed radiolabeled phospholipid (PL) turnover after FMLP +/- protein I (P.I.). Treatment of PMN with FMLP (0.1 microM) resulted in breakdown of phosphatidylcholine (PC), beginning at 30 s, and reaching a nadir at 60 s (3H-PC = 59 +/- 10.2% SEM of resting, 14C-PC = 57 +/- 6.4%). Protein I (0.25 microM) significantly inhibited PC turnover after FMLP ([3H]PC = 95 +/- 5.6% and [14C]PC = 86 +/- 8.4% of resting at 60 s), but failed to alter the metabolism of 3H- or 14C-phosphatidylinositol after FMLP (91 +/- 19.6 and 88 +/- 16.5% vs. 92 +/- 9.2 and 91 +/- 16% at 60 s).(ABSTRACT TRUNCATED AT 400 WORDS)
PMCID:2289089
PMID: 1907286
ISSN: 0021-9525
CID: 13948

Non-steroidal anti-inflammatory drugs: effects on a GTP binding protein within the neutrophil plasma membrane

Abramson SB; Leszczynska-Piziak J; Haines K; Reibman J
Sodium salicylate and other non-steroidal anti-inflammatory drugs (NSAIDs) inhibit neutrophil functions via unknown mechanisms. To examine their site of action in the neutrophil we have studied discrete events within the plasma membrane which depend upon the normal function of a GTP binding protein (G protein). We demonstrated that sodium salicylate and piroxicam inhibit neutrophil activation in response to stimuli which require signal transduction via a G protein (e.g. formyl-methionine-leucine-phenylalanine) but have no effect on stimuli which do not (e.g. phorbol myristate acetate, ionomycin). NSAIDs blocked the ADP-ribosylation of the pertussis toxin substrate in human neutrophils. This effect was associated with the capacity of NSAIDs to block pertussis toxin-dependent inhibition of neutrophil functions. Finally, NSAIDs inhibited the binding of GTP gamma S, a stable analog of GTP, to purified neutrophil membrane preparations. The data indicate that salicylate and other NSAIDs interact with a G protein in the neutrophil plasmalemma and thereby uncouple post-receptor signaling events
PMID: 1904224
ISSN: 0006-2952
CID: 9756

THE CHEMOATTRACTANT FAMILY - ANTAGONISM OF SUBSTANCE-P, BUT NOT OTHER CHEMOATTRACTANTS, BY SOMATOSTATIN [Meeting Abstract]

KOLASINSKI, SL; HAINES, KA; SIEGEL, EL; CRONSTEIN, BN; ABRAMSON, SB
ISI:A1991FH32300676
ISSN: 0009-9279
CID: 51609

PROTEIN-I OF N-GONORRHEA PERMITS DISTINCTION BETWEEN G-PROTEIN DEPENDENT NEUTROPHIL RESPONSES [Meeting Abstract]

HAINES, KA; TANG, XY; WEISSMANN, G
ISI:A1991FE03801018
ISSN: 0031-3998
CID: 51665

Differences in signal transduction between Fc gamma receptors (Fc gamma RII, Fc gamma RIII) and FMLP receptors in neutrophils. Effects of colchicine on pertussis toxin sensitivity and diacylglycerol formation

Reibman J; Haines KA; Gude D; Weissmann G
Studies on the role of microtubule integrity in stimulus-response coupling in neutrophils have generated contradictory data. To determine the role of microtubule integrity in stimulus-response coupling elicited by two different mechanisms, i.e., engagement of the Fc receptors (FcR gamma II, FcR gamma III) or engagement of the receptor for FMLP, we utilized colchicine (10 microM), which reduces pericentriolar microtubules to 29% of control, and compared its effect with that of nocodazole (50 microM) and lumicolchicine (10 microM). We now demonstrate that treatment of neutrophils with colchicine but not lumicolchicine, inhibits degranulation elicited by engagement of Fc receptors but augments degranulation in response to FMLP. In contrast to the ligand-specific effect of microtubule-disruption on degranulation, superoxide anion production (assembly of the NADPH oxidase) is unaffected by colchicine regardless of the ligand. To determine whether intact microtubules were required for responses elicited by ligation of Fc gamma RII(CD32) or Fc gamma RIII(CD16), mAb directed against these receptors were employed. Treatment of neutrophils with mAb KuFc79 directed against Fc gamma RII(CD32) or mAb 3G8 directed against Fc gamma RIII(CD16) inhibited degranulation of neutrophils elicited by immune complexes (IC). In contrast, removal of most of Fc gamma RIII by phosphatidylinositol-specific phospholipase C did not significantly alter degranulation in response to IC. We conclude that degranulation elicited by IC results from ligation of both Fc gamma RII and phosphatidylinositol-specific phospholipase C-insensitive Fc gamma RIII. The importance of microtubule integrity on the generation of intracellular signals was also examined. Degranulation of neutrophils proceeds via pertussis toxin-sensitive and insensitive pathways; treatment of cells with colchicine did not augment the action of pertussis toxin. Stimulation of neutrophils by chemoattractants results in a biphasic increase in 1,2-sn-diacylglycerol; a rapid increase ('triggering') secondary to the action of a phosphatidylinositol-specific phospholipase C, and a late increase ('activation') secondary to the action of a phosphatidylcholine-specific phospholipase C. Treatment of cells with colchicine altered the production of both [3H]-arachidonic acid-diacylglycerol and diacyl[14C]glycerol in parallel to its effect on degranulation. These studies indicate that the requirement of intact microtubules for degranulation is ligand-specific. Furthermore, assembly of the respiratory burst oxidase does not require intact microtubules. Microtubules most likely alter the cycling of specific receptors or the generation of specific intracellular signals required for stimulus-response coupling in the course of degranulation. Intact microtubules are not uniformly required for the discharge of granule contents during exocytosis
PMID: 1846387
ISSN: 0022-1767
CID: 14149

Low molecular weight GTP-binding proteins in human neutrophil granule membranes

Philips MR; Abramson SB; Kolasinski SL; Haines KA; Weissmann G; Rosenfeld MG
Degranulation of neutrophils involves the differential regulation of the exocytosis of at least two populations of granules. Low molecular weight GTP-binding proteins (LMW-GBPs) have been implicated in the regulation of vesicular traffic in the secretory pathways of several types of cells. In the present study we identify distinct subsets of LMW-GBPs associated with the membranes of neutrophil-specific and azurophilic granules. Ninety-four percent of total [35S]guanosine 5'-(3-O-thio)triphosphate (GTP gamma S) binding activity was equally distributed between the plasma membrane and cytosol with the remaining 6% localized in the granules. In contrast, the cytosol contained only 10% of the total GTPase activity while the specific granules accounted for 13%. [alpha-32P]GTP binding to proteins transferred to nitrocellulose revealed LMW-GBPs in all fractions except the azurophilic granules. The specific granules contained three out of four bands which were found in the plasma membrane; these ranged from 20 to 23 kDa and all were resistant to alkaline extraction. Photoaffinity labeling with [alpha-32P]8-azido-GTP in the presence of micromolar Al3+ identified proteins of 25 and 26 kDa unique to azurophilic granules; these could not be labeled with [alpha-32P]8-azido-ATP and could be extracted by acidic but not alkaline pH. Botulinum C3-mediated [32P]ADP-ribosylation identified proteins of 16, 20, and 24 kDa both in plasma membranes and those of specific granules. An anti-ras monoclonal antibody, 142-24E5, recognized a 20-kDa protein localized to the plasma and specific granule membranes which could not be extracted by alkaline pH, was not a substrate for botulinum C3 ADP-ribosyltransferase, and was translocated from specific granules to plasma membrane after exposure of neutrophils to phorbol myristate acetate. We conclude that neutrophil-specific and azurophilic granules contain distinct subsets of LMW-GBPs which are uniquely situated to regulate the differential exocytosis of these two compartments
PMID: 1898732
ISSN: 0021-9258
CID: 8314

Protein I of N. gonorrhoeae shows that phosphatidate from phosphatidylcholine via phospholipase C is an intracellular messenger in neutrophil activation by chemoattractants

Haines KA; Weissmann G
PMID: 1847565
ISSN: 0732-8141
CID: 14198

Cocaine and its derivatives blunt neutrophil functions without influencing phosphorylation of a 47-kilodalton component of the reduced nicotinamide-adenine dinucleotide phosphate oxidase

Haines KA; Reibman J; Callegari PE; Abramson SB; Philips MR; Weissmann G
Cocaine and its derivatives blunted responses of neutrophils (cell/cell aggregation, up-regulation of the receptor for C3bi (CR3, CD11b/CD18), generation of superoxide anion (O2-) and degranulation to various stimuli. The order of potency of these agents was the same as that for local anesthesia: tetracaine greater than bupivacaine greater than cocaine greater than lidocaine. Neutrophil aggregation elicited by the chemoattractant FMLP (10(-7) M) was inhibited by cocaine (10 mM) to 13.6 +/- 6% of control (p less than 0.002); the IC50 was approximately 4 mM. Cocaine and the other local anesthetics not only inhibited the upregulation of CR3 and O2- generation, but also blocked degranulation of cytochalasin B-treated cells. Cocaine (10 mM) reduced beta-glucuronidase and lysozyme secretion to 4.3 +/- 0.7 and 13 +/- 2.2% controls, respectively; its IC50 was 4 mM. Local anesthetics added after ligand/receptor engagement (FMLP) interrupted aggregation and halted generation of O2-. Moreover, local anesthetics rapidly inhibited aggregation, O2- generation, and degranulation elicited by PMA (1 microgram/ml) or the Ca ionophore A23187 (10 microM): the effects of cocaine could therefore not be attributed to unique actions at the FMLP receptor. Peak levels of intracellular Ca2+ ([Ca]i) at 5 to 10 s, and levels of [Ca]i 120 s after FMLP in Fura 2-loaded cells were significantly lower in cells treated with lidocaine, findings that could be explained by enhanced 45Ca2+ efflux from neutrophils. In cells loaded with bis(carboxyethyl)carboxyfluorescine (pH indicator) local anesthetics failed to affect the initial FMLP-induced (0 to 15 s) drop of pHi but inhibited the later (120 s) realkalinization of the cytosol (lidocaine, bupivacaine). Most remarkably, autoradiographs of SDS gels prepared from stimulated, 32P-labeled neutrophils treated with local anesthetics showed no difference from resting cells, either with respect to patterns of phosphorylation and dephosphorylation or their kinetics. Labeling of a 47-kDa protein, a component of the reduced nicotinamide-adenine dinucleotide phosphate-oxidase system, was unchanged. The effects of local anesthetics, which blunt neutrophil responses without affecting protein phosphorylation, suggest that protein phosphorylation is an insufficient signal for neutrophil activation. Inasmuch as cocaine and its derivatives affect cell functions at sites distal to activation of protein kinase C, these agents should prove useful in uncoupling protein phosphorylation from functional responses
PMID: 2161879
ISSN: 0022-1767
CID: 9758

LOCALIZATION OF LOW-MOLECULAR-WEIGHT GTP BINDING-PROTEINS IN MEMBRANES OF HUMAN NEUTROPHIL GRANULES [Meeting Abstract]

Philips, MR; Rosenfeld, MG; Abramson, SB; Kolasinski, SL; Haines, KA; Weissmann, G
ISI:A1990CZ24400713
ISSN: 0009-9279
CID: 32065