Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:id460

Total Results:

114


SHP2 inhibition diminishes KRASG12C cycling and promotes tumor microenvironment remodeling

Fedele, Carmine; Li, Shuai; Teng, Kai Wen; Foster, Connor J R; Peng, David; Ran, Hao; Mita, Paolo; Geer, Mitchell J; Hattori, Takamitsu; Koide, Akiko; Wang, Yubao; Tang, Kwan Ho; Leinwand, Joshua; Wang, Wei; Diskin, Brian; Deng, Jiehui; Chen, Ting; Dolgalev, Igor; Ozerdem, Ugur; Miller, George; Koide, Shohei; Wong, Kwok-Kin; Neel, Benjamin G
KRAS is the most frequently mutated human oncogene, and KRAS inhibition has been a longtime goal. Recently, inhibitors were developed that bind KRASG12C-GDP and react with Cys-12 (G12C-Is). Using new affinity reagents to monitor KRASG12C activation and inhibitor engagement, we found that an SHP2 inhibitor (SHP2-I) increases KRAS-GDP occupancy, enhancing G12C-I efficacy. The SHP2-I abrogated RTK feedback signaling and adaptive resistance to G12C-Is in vitro, in xenografts, and in syngeneic KRASG12C-mutant pancreatic ductal adenocarcinoma (PDAC) and non-small cell lung cancer (NSCLC). SHP2-I/G12C-I combination evoked favorable but tumor site-specific changes in the immune microenvironment, decreasing myeloid suppressor cells, increasing CD8+ T cells, and sensitizing tumors to PD-1 blockade. Experiments using cells expressing inhibitor-resistant SHP2 showed that SHP2 inhibition in PDAC cells is required for PDAC regression and remodeling of the immune microenvironment but revealed direct inhibitory effects on tumor angiogenesis and vascularity. Our results demonstrate that SHP2-I/G12C-I combinations confer a substantial survival benefit in PDAC and NSCLC and identify additional potential combination strategies.
PMID: 33045063
ISSN: 1540-9538
CID: 4632492

Connecting the Dots: Resolving the Bone Marrow Niche Heterogeneity

Dolgalev, Igor; Tikhonova, Anastasia N
Single-cell sequencing approaches have transformed our understanding of stem cell systems, including hematopoiesis and its niche within the bone marrow. Recent reports examined the bone marrow microenvironment at single-cell resolution at steady state, following chemotherapy treatment, leukemic onset, and aging. These rapid advancements significantly informed our understanding of bone marrow niche heterogeneity. However, inconsistent representation and nomenclature among the studies hinder a comprehensive interpretation of this body of work. Here, we review recent reports interrogating bone marrow niche architecture and present an integrated overview of the published datasets.
PMCID:7994602
PMID: 33777933
ISSN: 2296-634x
CID: 4830472

The Double-Edged Sword of Chemotherapy: Single Cell RNA Sequencing of Human PDA Reveals T-Cell Activation With Simultaneous Priming of Inhibitory Macrophages [Meeting Abstract]

Werba, G.; Dolgalev, I.; Zhao, E.; Jing, X.; Gonda, T.; Oberstein, P.; Welling, T.; Tsirigos, A.; Simeone, D. M.
ISI:000706786400288
ISSN: 0885-3177
CID: 5236652

Leukemia-on-a-chip: Dissecting the chemoresistance mechanisms in B cell acute lymphoblastic leukemia bone marrow niche

Ma, Chao; Witkowski, Matthew T; Harris, Jacob; Dolgalev, Igor; Sreeram, Sheetal; Qian, Weiyi; Tong, Jie; Chen, Xin; Aifantis, Iannis; Chen, Weiqiang
B cell acute lymphoblastic leukemia (B-ALL) blasts hijack the bone marrow (BM) microenvironment to form chemoprotective leukemic BM "niches," facilitating chemoresistance and, ultimately, disease relapse. However, the ability to dissect these evolving, heterogeneous interactions among distinct B-ALL subtypes and their varying BM niches is limited with current in vivo methods. Here, we demonstrated an in vitro organotypic "leukemia-on-a-chip" model to emulate the in vivo B-ALL BM pathology and comparatively studied the spatial and genetic heterogeneity of the BM niche in regulating B-ALL chemotherapy resistance. We revealed the heterogeneous chemoresistance mechanisms across various B-ALL cell lines and patient-derived samples. We showed that the leukemic perivascular, endosteal, and hematopoietic niche-derived factors maintain B-ALL survival and quiescence (e.g., CXCL12 cytokine signal, VCAM-1/OPN adhesive signals, and enhanced downstream leukemia-intrinsic NF-κB pathway). Furthermore, we demonstrated the preclinical use of our model to test niche-cotargeting regimens, which may translate to patient-specific therapy screening and response prediction.
PMID: 33127669
ISSN: 2375-2548
CID: 4647202

Oncogenes overexpressed in metastatic oral cancers from patients with pain: potential pain mediators released in exosomes

Bhattacharya, Aditi; Janal, Malvin N; Veeramachaneni, Ratna; Dolgalev, Igor; Dubeykovskaya, Zinaida; Tu, Nguyen Huu; Kim, Hyesung; Zhang, Susanna; Wu, Angie K; Hagiwara, Mari; Kerr, A Ross; DeLacure, Mark D; Schmidt, Brian L; Albertson, Donna G
Oral cancer patients experience pain at the site of the primary cancer. Patients with metastatic oral cancers report greater pain. Lack of pain identifies patients at low risk of metastasis with sensitivity = 0.94 and negative predictive value = 0.89. In the same cohort, sensitivity and negative predictive value of depth of invasion, currently the best predictor, were 0.95 and 0.92, respectively. Cancer pain is attributed to cancer-derived mediators that sensitize neurons and is associated with increased neuronal density. We hypothesized that pain mediators would be overexpressed in metastatic cancers from patients reporting high pain. We identified 40 genes overexpressed in metastatic cancers from patients reporting high pain (n=5) compared to N0 cancers (n=10) and normal tissue (n=5). The genes are enriched for functions in extracellular matrix organization and angiogenesis. They have oncogenic and neuronal functions and are reported in exosomes. Hierarchical clustering according to expression of neurotrophic and axon guidance genes also separated cancers according to pain and nodal status. Depletion of exosomes from cancer cell line supernatant reduced nociceptive behavior in a paw withdrawal assay, supporting a role for exosomes in cancer pain. The identified genes and exosomes are potential therapeutic targets for stopping cancer and attenuating pain.
PMID: 32895418
ISSN: 2045-2322
CID: 4588822

Extensive Remodeling of the Immune Microenvironment in B Cell Acute Lymphoblastic Leukemia

Witkowski, Matthew T; Dolgalev, Igor; Evensen, Nikki A; Ma, Chao; Chambers, Tiffany; Roberts, Kathryn G; Sreeram, Sheetal; Dai, Yuling; Tikhonova, Anastasia N; Lasry, Audrey; Qu, Chunxu; Pei, Deqing; Cheng, Cheng; Robbins, Gabriel A; Pierro, Joanna; Selvaraj, Shanmugapriya; Mezzano, Valeria; Daves, Marla; Lupo, Philip J; Scheurer, Michael E; Loomis, Cynthia A; Mullighan, Charles G; Chen, Weiqiang; Rabin, Karen R; Tsirigos, Aristotelis; Carroll, William L; Aifantis, Iannis
A subset of B cell acute lymphoblastic leukemia (B-ALL) patients will relapse and succumb to therapy-resistant disease. The bone marrow microenvironment may support B-ALL progression and treatment evasion. Utilizing single-cell approaches, we demonstrate B-ALL bone marrow immune microenvironment remodeling upon disease initiation and subsequent re-emergence during conventional chemotherapy. We uncover a role for non-classical monocytes in B-ALL survival, and demonstrate monocyte abundance at B-ALL diagnosis is predictive of pediatric and adult B-ALL patient survival. We show that human B-ALL blasts alter a vascularized microenvironment promoting monocytic differentiation, while depleting leukemia-associated monocytes in B-ALL animal models prolongs disease remission in vivo. Our profiling of the B-ALL immune microenvironment identifies extrinsic regulators of B-ALL survival supporting new immune-based therapeutic approaches for high-risk B-ALL treatment.
PMID: 32470390
ISSN: 1878-3686
CID: 4452012

Functional analysis of RPS27 mutations and expression in melanoma

Floristán, Alfredo; Morales, Leah; Hanniford, Douglas; Martinez, Carlos; Castellano-Sanz, Elena; Dolgalev, Igor; Ulloa-Morales, Alejandro; Vega-Saenz de Miera, Eleazar; Moran, Una; Darvishian, Farbod; Osman, Iman; Kirchhoff, Tomas; Hernando, Eva
Next-generation sequencing has enabled genetic and genomic characterization of melanoma to an unprecedent depth. However, the high mutational background plus the limited deep-coverage whole-genome sequencing performed on cutaneous melanoma samples, make difficult the identification of novel driver mutations. We sought to explore the somatic mutation portfolio in exonic and gene regulatory regions in human melanoma samples, for which we performed targeted sequencing of tumors and matched germline DNA samples from 89 melanoma patients, identifying known and novel recurrent mutations. Two recurrent mutations found in the RPS27 promoter associated with decreased RPS27 mRNA levels in vitro. Data mining and IHC analyses revealed a bimodal pattern of RPS27 expression in melanoma, with RPS27-low patients displaying worse prognosis. In vitro characterization of RPS27-high and -low melanoma cell lines, as well as loss-of-function experiments, demonstrated that high RPS27 status provides increased proliferative and invasive capacities, while low RPS27 confers survival advantage in low-attachment and resistance to therapy. Additionally, we demonstrate that 10 other cancer types harbor bimodal RPS27 expression and in those, similarly to melanoma, RPS27-low expression associates with worse clinical outcomes. RPS27 promoter mutation could thus represent a mechanism of gene expression modulation in melanoma patients, which may have prognostic and predictive implications.
PMID: 31663663
ISSN: 1755-148x
CID: 4162282

Single-cell evaluation of myelodysplastic syndrome stem cells identifies determinants of hypomethylating agent response and a novel prognostic gene signature [Meeting Abstract]

Javidiparsijani, S; Dolgalev, I; Vijay, P; Del, Rey Gonzalez M; Devlin, S; Klimek, V; Chung, S; Mason, C; Park, C
Background: The myelodysplastic syndromes (MDS) are disorders of ineffective hematopoiesis that arise in hematopoietic stem cells (HSCs). To better understand the mechanisms underlying MDS pathogenesis and clinical responses to the hypomethylating agent decitabine (DAC), we used single-cell RNA-sequencing to evaluate HSCs from MDS patients treated with DAC as well as from normal young and old controls.
Design(s): HSCs (Lin-CD34+CD38-CD90+CD45RA-) were purified from low-risk MDS patients (n=6) as well as normal controls including cord blood (n=2), young adults (range 21-35; n=2), middle-age adults (range:40-50; n=2) and elderly controls (>65 years old; n=2); paired pre- and post-DAC samples from MDS patients undergoing therapy were evaluated. Using the Fluidigm C1 platform, we captured a total of 1,606 single cells from 26 samples and performed RNA-sequencing (Illumina HiSeq2500,100 bp paired-end reads) Results: Uniform Manifold Approximation and Projection (UMAP) dimensionality reduction revealed that normal and MDS HSCs exhibit unique transactional profiles and confirmed the unique transcriptional features of each of the tested groups (Fig1). Pseudotime ordering showed that MDS HSCs express a gene signature that is independent of age. Intriguingly, mRNAs encoding genes recurrently mutated in myeloid neoplasms and associated with clonal hematopoiesis(e.g. ASXL1, TET2, DNMT3A, PP1MD) were downregulated in the elderly HSCs. HSCs from DAC responders are more similar to normal controls than non-responder HSCs, and are characterized by decreased ribosomal protein expression and increased p53 activation, particularly in non-responders. Comparison of MDS HSCs from responders to non-responder identified 455 DEGs (FDR<0.01) enriched for gene ontology (GO) terms involving "mRNA catabolic process, NMD," "protein localization to the ER," and "translational elongation," with 12 of the top 13 DEGs being ribosomal proteins (RPs). Utilizing the 491 DEGs (FDR< 0.01) in MDS HSCs compared to age-matched controls, we used LASSO regression to identify and validate a 10-gene signature that was able to stratify patients into low, intermediate, and high risk groups and predict overall survival (OS) in a large cohort of MDS patients (GSE19429) (Figure presented)
Conclusion(s): Single-cell RNA sequencing identifies genes that distinguish MDS from normal HSCs. MDS HSCs exhibit transcriptional changes that predict OS as well as clinical responses to DAC therapy. These studies support the importance of HSCs in determining clinical outcomes in MDS
EMBASE:631879601
ISSN: 1530-0285
CID: 4471252

Siah2 control of T-regulatory cells limits anti-tumor immunity

Scortegagna, Marzia; Hockemeyer, Kathryn; Dolgalev, Igor; Poźniak, Joanna; Rambow, Florian; Li, Yan; Feng, Yongmei; Tinoco, Roberto; Otero, Dennis C; Zhang, Tongwu; Brown, Kevin; Bosenberg, Marcus; Bradley, Linda M; Marine, Jean-Christophe; Aifantis, Ioannis; Ronai, Ze'ev A
Understanding the mechanisms underlying anti-tumor immunity is pivotal for improving immune-based cancer therapies. Here, we report that growth of BRAF-mutant melanoma cells is inhibited, up to complete rejection, in Siah2-/- mice. Growth-inhibited tumors exhibit increased numbers of intra-tumoral activated T cells and decreased expression of Ccl17, Ccl22, and Foxp3. Marked reduction in Treg proliferation and tumor infiltration coincide with G1 arrest in tumor infiltrated Siah2-/- Tregs in vivo or following T cell stimulation in culture, attributed to elevated expression of the cyclin-dependent kinase inhibitor p27, a Siah2 substrate. Growth of anti-PD-1 therapy resistant melanoma is effectively inhibited in Siah2-/- mice subjected to PD-1 blockade, indicating synergy between PD-1 blockade and Siah2 loss. Low SIAH2 and FOXP3 expression is identified in immune responsive human melanoma tumors. Overall, Siah2 regulation of Treg recruitment and cell cycle progression effectively controls melanoma development and Siah2 loss in the host sensitizes melanoma to anti-PD-1 therapy.
PMCID:6946684
PMID: 31911617
ISSN: 2041-1723
CID: 4257292

Oral cancer pain mediators released in exosomes are oncogenes with potential to shape the microenvironment and induce neuronal sensitivity [Meeting Abstract]

Bhattacharya, Aditi; Dubeykoskaya, Zinaida; Nguyen, Huu Tu; Dolgalev, Igor; Veeramachaneni, Ratna; Schmidt, Brian L.; Albertson, Donna G.
ISI:000590059302069
ISSN: 0008-5472
CID: 4820802