Searched for: in-biosketch:yes
person:jr57
Characterization of primate trypanosome lytic factors
Lugli, Elena B; Pouliot, Michael; Portela, Maria Del Pilar Molina; Loomis, Michael R; Raper, Jayne
Humans are one of the few species that resist infection by Trypanosoma brucei brucei because the parasites are killed by lytic factors found in human serum. Trypanosome lytic factors (TLFs) are protein/lipid complexes that contain apolipoprotein A-I (apoA-I), and are therefore a class of high density lipoproteins (HDLs). Haptoglobin-related protein (Hpr) is a unique protein component of TLFs, and its expression has only been demonstrated in humans. Trypanolytic activity has only been found in the sera of five primates: humans, gorillas, mandrills, baboons and sooty mangabeys. We describe here previously unidentified components of highly purified human TLF1: apolipoprotein L-I (apoL-I), human cathelicidin antimicrobial peptide 18 (hCAP18) and glycosylphosphatidylinositol-specific phospholipase D (GPI-PLD). However, we found that hCAP18 and GPI-PLD, along with apoA-I, are common components of both lytic and non-lytic primate HDLs. In contrast, Hpr, which has been previously implicated as the main lytic component of TLF1, was a unique component of all trypanolytic primate HDLs. Furthermore, a polyclonal antiserum to Hpr neutralized the lytic activity from humans and baboons. ApoL-I, a candidate lytic component of human serum, was not immunologically or genetically detectable in two primate species with lytic activity. Polyclonal antiserum to apoL-I also did not neutralize TLF activity in a total human HDL preparation. These findings suggest that apoL-I is not essential in all primate TLFs, and apoL-I alone is not sufficient for optimal trypanosome lytic activity in human TLF
PMID: 15500911
ISSN: 0166-6851
CID: 46466
Evidence for a Trypanosoma brucei lipoprotein scavenger receptor
Green, Heather P; Del Pilar Molina Portela, Maria; St Jean, Emmanuelle N; Lugli, Elena B; Raper, Jayne
African trypanosomes are lipid auxotrophs that live in the bloodstream of their human and animal hosts. Trypanosomes require lipoproteins in addition to other serum components in order to multiply under axenic culture conditions. Delipidation of the lipoproteins abrogates their capacity to support trypanosome growth. Both major classes of serum lipoproteins, LDL and HDL, are primary sources of lipids, delivering cholesterol esters, cholesterol, and phospholipids to trypanosomes. We show evidence for the existence of a trypanosome lipoprotein scavenger receptor, which facilitates the endocytosis of both native and modified lipoproteins, including HDL and LDL. This lipoprotein scavenger receptor also exhibits selective lipid uptake, whereby the uptake of the lipid components of the lipoprotein exceeds that of the protein components. Trypanosome lytic factor (TLF1), an unusual HDL found in human serum that protects from infection by lysing Trypanosoma brucei brucei, is also bound and endocytosed by this lipoprotein scavenger receptor. HDL and LDL compete for the binding and uptake of TLF1 and thereby attenuate the trypanosome lysis mediated by TLF1. We also show that a mammalian scavenger receptor facilitates lipid uptake from TLF1 in a manner similar to the trypanosome scavenger receptor. Based on these results we propose that HDL, LDL, and TLF1 are all bound and taken up by a lipoprotein scavenger receptor, which may constitute the parasite's major pathway mediating the uptake of essential lipids
PMID: 12401813
ISSN: 0021-9258
CID: 39381
Natural immunity to human African trypanosomiasis: trypanosome lytic factors and the blood incubation infectivity test
Raper, Jayne; Portela Molina, Maria Pilar; Redpath, Maria; Tomlinson, Stephen; Lugli, Elena; Green, Heather
This review focuses on the epidemiology of human African trypanosomiasis: why it occurs in humans, the current methods of surveillance, and the drugs available to treat it. Emphasis is placed on the identification of human-infective trypanosomes by the blood incubation infectivity test. This test distinguishes between trypanosomes that are non-infective for humans and those that are potentially infective. Currently the test requires incubation of parasites with human serum before injection into mice; any surviving parasites are considered human-infective. The factors in serum that kill all non-human-infective parasites are known as trypanosome lytic factors. The paper details the biochemistry of these factors and recommends standardization of the test based on current knowledge. This test can be used to screen animals with trypanosomiasis, in order to evaluate their role during endemic and epidemic human African trypanosomiasis
PMID: 12055829
ISSN: 0035-9203
CID: 39632
Trypanosome lytic factors: novel mediators of human innate immunity
Raper J; Portela MP; Lugli E; Frevert U; Tomlinson S
A novel trypanosome lytic factor (TLF) has been characterized that protects humans from infection by Trypanosoma brucei brucei. The mechanism of trypanolysis is unknown; contrary to one hypothesis, TLF does not kill trypanosomes by generating oxygen radicals. However, these trypanosomes become human-infective when they express a serum-resistance-associated gene
PMID: 11495802
ISSN: 1369-5274
CID: 26706
An investigation into the mechanism of trypanosome lysis by human serum factors
Molina Portela MP; Raper J; Tomlinson S
African trypanosomes are the causative agents of sleeping sickness in humans and of Nagana in cattle. The infectivity of African trypanosome species for humans appears to be defined by their susceptibility to two lytic factors in human serum; trypanosome lytic factor (TLF)1, a subclass of human high density lipoprotein (HDL) and TLF2, a high molecular weight protein complex. Available evidence indicates that following receptor mediated uptake, TLF is targeted to the lysosome where the low pH triggers a TLF-dependant peroxidase activity resulting in the formation of reactive oxygen radicals with consequent lipid peroxidation and destruction of the lysosomal membrane. Nearly all previous work on the mechanism of parasite lysis has been performed using TLF1. In this study, we directly test the hypothesis that TLF1 and TLF2 kill Trypanosoma brucei by a mechanism involving oxidative stress. We found no evidence for lipid peroxidation in trypanosomes exposed to high concentrations of trypanolytic HDL (impure TLF1), although lipid peroxidation was detected in parasites exposed to low concentrations of low molecular weight peroxides. Neither HDL, TLF1 nor TLF2 generated detectable levels of intracellular reactive oxygen intermediates. Various antioxidants also had no effect on TLF1 or TLF2-mediated lysis, although the antioxidants catalase and superoxide dismutase were effective at inhibiting peroxide generation and parasite lysis in control systems. Various metal chelating agents and protease inhibitors were also tested without effect. These data provide strong evidence against a peroxidative mechanism being involved in TLF-mediated lysis
PMID: 11071282
ISSN: 0166-6851
CID: 21262
Reply [In Process Citation] [Letter]
Tomlinson S; Raper J
PMID: 10366835
ISSN: 0169-4758
CID: 12004
The purification and characterization of a novel high density lipoprotein immune complex from human serum [Meeting Abstract]
Raper, J
ISI:000082033400887
ISSN: 0892-6638
CID: 53939
Characterization of a novel trypanosome lytic factor from human serum
Raper J; Fung R; Ghiso J; Nussenzweig V; Tomlinson S
Natural resistance of humans to the cattle pathogen Trypanosoma brucei brucei has been attributed to the presence in human serum of nonimmune factors that lyse the parasite. Normal human serum contains two trypanosome lytic factors (TLFs). TLF1 is a 500-kDa lipoprotein, which is reported to contain apolipoprotein A-I (apoA-I), haptoglobin-related protein (Hpr), hemoglobin, paraoxonase, and apoA-II, whereas TLF2 is a larger, poorly characterized particle. We report here a new immunoaffinity-based purification procedure for TLF2 and TLF1, as well as further characterization of the components of each purified TLF. Immunoaffinity-purified TLF1 has a specific activity 10-fold higher than that of TLF1 purified by previously described methods. Moreover, we find that TLF1 is a lipoprotein particle that contains mainly apoA-I and Hpr, trace amounts of paraoxonase, apoA-II, and haptoglobin, but no detectable hemoglobin. Characterization of TLF2 reveals that it is a 1,000-kDa protein complex containing mainly immunoglobulin M, apoA-I, and Hpr but less than 1% detectable lipid
PMCID:96545
PMID: 10085035
ISSN: 0019-9567
CID: 6065
Natural human immunity to trypanosomes
Tomlinson, S; Raper, J
Complement-dependent destruction of invading micro-organisms is a crucial first-line defense against infection, yet both African and American trypanosomes are able to resist attack by complement. African trypanosomes resist non-specific complement attack by virtue of a thick glycoprotein surface coat, and the host range of certain African trypanosomes is believed to be defined by their susceptibility to a subclass of human high density lipoprotein (HDL) and/or a high molecular weight protein complex present in human serum. In the first part of this review, Stephen Tomlinson and Jayne Raper look at the properties and mechanisms of action of these trypanolytic factors on African trypanosomes, and discuss briefly the possible mechanisms whereby these human pathogens resist lysis by human serum. The mechanisms that enable the American trypanosome Trypanosoma cruzi to resist complement attack are reviewed in the second part of this article
PMID: 17040816
ISSN: 0169-4758
CID: 105898
Haptoglobin-related protein and apolipoprotein AI are components of the two trypanolytic factors in human serum
Tomlinson S; Muranjan M; Nussenzweig V; Raper J
PMID: 9178275
ISSN: 0166-6851
CID: 7272