Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:krogsm01

Total Results:

76


Mechanisms of primary resistance to cancer immunotherapies [Meeting Abstract]

Moogk, D; Li, K; Yuan, Z; Zhong, S; Yu, Z; Liadi, I; Rittase, W; Fang, V; Dougherty, J; Perez-Garcia, A; Osman, I; Varadarajan, N; Restifo, N P; Frey, A; Zhu, C; Krogsgaard, M
Background: Although much clinical progress has been made in harnessing the immune system to recognize and target cancer, there is still a significant lack of an understanding of how tumors evade immune recognition and the mechanisms that drive tumor resistance to both T cell and checkpoint blockade immunotherapy. Our objective is to understand how tumor-mediated signaling through inhibitory receptors, including PD-1, combine to affect the process of T cell recognition of tumor antigen and activation signaling, with the goal of understanding the basis of resistance to PD-1 blockade and the potential identification of new molecular targets to enable T cells to overcome dysfunction mediated by multiple inhibitory receptors.
Methods and Results: We show that Lck activity affects T cell sensitivity and influences the probability of inducing effector function [1]. Under non-activating conditions, Lck and Shp-1 phosphorylation and activity vary based on CD8+ memory T cell phenotype. Shp-1 interaction with Lck under non-activation conditions can also vary, as suggested by our results showing decreased Shp-1 S591 phosphorylation, which affects Shp-1 localization and correlates with increased Shp-1 colocalization with Lck. Further, we showed that Shp-1 directly influences Lck activity under non-activating conditions, as inhibition of Shp-1 leads to increased Lck activity. Importantly, inhibition of Shp- 1/2, a major mediator of PD-1 signaling, targeting CD28 and Lck [2], prior to activation leads to increased T cell cytotoxic effector function. Our proteomics-based analysis of patient T cells identified both mediators of PD-1 signaling and signaling components and pathways associated with blockade resistance. It has generally been thought that TCR and CD8 binding depend mainly on their ectodomain interactions with pMHC. We have shown, however, that Lck-CD8 binding [3] and Lck activity [4] are required for upregulated CD8 binding to prebound TCR-pMHC complex. Therefore, the cytoplasmic associations of Lck with CD8 and Zap-70, as well as CD3 with Zap-70 may influence formation and stability of the TCRpMHCCD8 complex. To determine the mechanistic basis of PD-1 inhibition of TCR-pMHCCD8 binding we utilized 2D affinity combined with Biomembrane Force Probe (BFP) measurements[5, 6] and showed that PD-1 directly suppresses TCR pMHCCD8 binding. Our data also revealed that TCR-pMHC binding was independent of PD-1-PD-L1, but TCRpMHCCD8 binding was suppressed by PD-1-PD-L1 binding demonstrating negative cooperativity, as fewer bonds formed than the sum of bonds formed by each interaction alone.
Conclusion(s): Together, our results show that the activities of TCRproximal signaling components affect T cell mechanosensing and sensitivity at the earliest stages of antigen recognition and are influenced by PD-1. Targeting these interactions may enhance tumor-specific T cell sensitivity for cancer immunotherapy and understanding the basis of resistance to PD-1 blockade to potentially allow identification of new molecular targets to enable T cells to overcome dysfunction mediated by multiple inhibitory receptors
EMBASE:627349888
ISSN: 1479-5876
CID: 3831912

Predictive biomarkers of check point inhibition toxicity in metastatic melanoma [Meeting Abstract]

Gowen, M; Tchack, J; Zhou, H; Giles, K; Paschke, S; Moran, U; Fenyo, D; Tsirigos, A; Pacold, M; Pavlick, A; Krogsgaard, M; Osman, I
Background: There are no predictive biomarkers of ipilimumab (IPI) toxicity. Of metastatic melanoma (MM) patients (pts) receiving IPI (3 mg/kg), 35% require systemic therapies to treat immune-related adverse events (irAEs) and 20% must terminate treatment [1]. Here we tested the hypothesis that a pre-existing autoantibody (autoAb) profile is predictive of IPI irAEs.
Method(s): We measured autoAb levels in pre- and post-treatment sera from MM pts who received IPI (3 mg/kg) monotherapy on a proteome microarray containing ~ 20,000 unique full-length human proteins (HuProt array, CDI Laboratories). Clinical data were prospectively collected with protocol-driven follow-up. IrAEs were categorized by CTCAE guidelines as none (grade 0), mild (grade 12), or severe (grade 34). AutoAb levels were standardized using median quantile normalization and considered positive hits if > 2-SD above the peak array signal and differed by >= 2-fold with p < 0.05 between toxicity groups (Non-parametric Analysis/Wilcox test).
Result(s): Seventy-eight sera from 37 MM pts were analyzed. Antibodies against CTLA-4 were significantly elevated post IPI treatment (p < 0.0001), validating the assay. The pre-treatment levels of 190 IgG autoAbs were significantly different in pts who experienced irAEs (n = 28) compared to those with no irAEs (n = 9). Comparison of severe irAE (n = 9) and no irAE (n = 9) groups revealed 129 IgG auto- Abs that significantly differed in pre-treatment sera. Localization and pathway analysis (UniProt, KEGG, Reactome) showed 81/190 (43%) of the autoAbs targeted nuclear and mitochondrial antigens and were enriched in metabolic pathways (p = 0.015). AutoAbs associated with irAEs did not correlate with treatment response.
Conclusion(s): AutoAbs to antigens enriched in metabolic pathways prior to treatment may predict IPI-induced toxicity in MM. The subcellular localization of targeted antigens could explain the autoimmune toxicities associated with IPI. Studies in larger cohorts and in pts receiving other checkpoint inhibitors and/or combination therapies are essential to determine the validity of the data. If validated, our results would support the discovery of the first toxicity predictor in cancer immunotherapy
EMBASE:627350799
ISSN: 1479-5876
CID: 3831892

Anti-CTLA4 toxicity associates with genetic variation correlating with serum antibody diversity [Meeting Abstract]

Simpson, D.; Ferguson, R.; Gowen, M.; Giles, K. M.; Tchack, J.; Zhou, H.; Moran, U.; Dawood, Z.; Pavlick, A.; Hu, S.; Wilson, M. A.; Zhong, H.; Krogsgaard, M.; Weber, J. S.; Osman, I.; Kirchhoff, T.
ISI:000459277302361
ISSN: 0923-7534
CID: 4354712

Predictive biomarkers of ipilimumab toxicity in metastatic melanoma [Meeting Abstract]

Gowen, M; Tchack, J; Zhou, H; Giles, K M; Paschke, S; Moran, U; Fenyo, D; Tsirigos, A; Pacold, M; Pavlick, A C; Krogsgaard, M; Osman, I
Background: There are no predictive biomarkers of ipilimumab (IPI) toxicity. Of metastatic melanoma (MM) patients (pts) receiving IPI (3mg/kg), 35% require systemic therapies to treat immune-related adverse events (irAEs) and 20% must terminate treatment (Horvat et al., JCO 2015). Here we tested the hypothesis that a pre-existing autoantibody (autoAb) profile is predictive of IPI irAEs. Methods: We measured autoAb levels in pre- and post-treatment sera from mm pts who received IPI (3mg/kg) monotherapy on a proteome microarray containing ~20,000 unique full-length human proteins (HuProt array, CDI Laboratories). Clinical data were prospectively collected with protocol-driven follow-up. IrAEs were categorized by CTCAE guidelines as none (grade 0), mild (grade 1-2), or severe (grade 3-4). AutoAb levels were standardized using median quantile normalization and considered positive hits if > 2-SD above the peak array signal and differed by >=2 fold with p < 0.05 between toxicity groups (Non-parametric Analysis/Wilcox test). Results: Seventy-eight sera from 37 mm pts were analyzed. Antibodies against CTLA-4 were significantly elevated post IPI treatment (p < 0.0001), validating the assay. The pre-treatment levels of 190 IgG autoAbs were significantly diferent in pts who experienced irAEs (n = 28) compared to those with no irAEs (n = 9). Comparison of severe irAE (n = 9) and no irAE (n = 9) groups revealed 129 IgG autoAbs that significantly differed in pre-treatment sera. Localization and pathway analysis (UniProt, KEGG, Reactome) showed 81/190 (43%) of the autoAbs targeted nuclear and mitochondrial antigens and were enriched in metabolic pathways (p = 0.015). AutoAbs associated with irAEs did not correlate with treatment response. Conclusions: AutoAbs to antigens enriched in metabolic pathways prior to treatment may predict IPI-induced toxicity in MM. The subcellular localization of targeted antigens could explain the autoimmune toxicities associated with IPI. Studies in larger cohorts and in pts receiving other checkpoint inhibitors and/or combination therapies are essential to determine the validity of the data. If validated, our results would support the discovery of the first toxicity predictor in cancer immunotherapy
EMBASE:617435374
ISSN: 0732-183x
CID: 2651122

Corrigendum to "Immunologic heterogeneity of tumor-infiltrating lymphocyte composition in primary melanoma" (Hum Pathol 2016;57:116-25) [Correction]

Weiss, Sarah A; Han, Sung Won; Lui, Kevin; Tchack, Jeremy; Shapiro, Richard; Berman, Russell; Zhong, Judy; Krogsgaard, Michelle; Osman, Iman; Darvishian, Farbod
PMID: 28449825
ISSN: 1532-8392
CID: 2544212

Regulation of T cell sensitivity by TCR-proximal signaling components during anti-melanoma responses [Meeting Abstract]

Moogk, Duane; Zhong, Shi; Yu, Zhiya; Liadi, Ivan; Rittase, William; Fang, Victoria; Dougherty, Janna; Perez-Garcia, Arianne; Osman, Iman; Zhu, Cheng; Varadarajan, Navin; Restifo, Nicholas P; Frey, Alan; Krogsgaard, Michelle
ISI:000410968300019
ISSN: 1479-5876
CID: 2719032

Constitutive Lck Activity Drives Sensitivity Differences between CD8+ Memory T Cell Subsets

Moogk, Duane; Zhong, Shi; Yu, Zhiya; Liadi, Ivan; Rittase, William; Fang, Victoria; Dougherty, Janna; Perez-Garcia, Arianne; Osman, Iman; Zhu, Cheng; Varadarajan, Navin; Restifo, Nicholas P; Frey, Alan B; Krogsgaard, Michelle
CD8+ T cells develop increased sensitivity following Ag experience, and differences in sensitivity exist between T cell memory subsets. How differential TCR signaling between memory subsets contributes to sensitivity differences is unclear. We show in mouse effector memory T cells (TEM) that >50% of lymphocyte-specific protein tyrosine kinase (Lck) exists in a constitutively active conformation, compared with <20% in central memory T cells (TCM). Immediately proximal to Lck signaling, we observed enhanced Zap-70 phosphorylation in TEM following TCR ligation compared with TCM Furthermore, we observed superior cytotoxic effector function in TEM compared with TCM, and we provide evidence that this results from a lower probability of TCM reaching threshold signaling owing to the decreased magnitude of TCR-proximal signaling. We provide evidence that the differences in Lck constitutive activity between CD8+ TCM and TEM are due to differential regulation by SH2 domain-containing phosphatase-1 (Shp-1) and C-terminal Src kinase, and we use modeling of early TCR signaling to reveal the significance of these differences. We show that inhibition of Shp-1 results in increased constitutive Lck activity in TCM to levels similar to TEM, as well as increased cytotoxic effector function in TCM Collectively, this work demonstrates a role for constitutive Lck activity in controlling Ag sensitivity, and it suggests that differential activities of TCR-proximal signaling components may contribute to establishing the divergent effector properties of TCM and TEM. This work also identifies Shp-1 as a potential target to improve the cytotoxic effector functions of TCM for adoptive cell therapy applications.
PMCID:4935560
PMID: 27271569
ISSN: 1550-6606
CID: 2136402

Structural Model of the Extracellular Assembly of the TCR-CD3 Complex

Natarajan, Aswin; Nadarajah, Vidushan; Felsovalyi, Klara; Wang, Wenjuan; Jeyachandran, Vivian R; Wasson, Riley A; Cardozo, Timothy; Bracken, Clay; Krogsgaard, Michelle
Antigen recognition of peptide-major histocompatibility complexes (pMHCs) by T cells, a key step in initiating adaptive immune responses, is performed by the T cell receptor (TCR) bound to CD3 heterodimers. However, the biophysical basis of the transmission of TCR-CD3 extracellular interaction into a productive intracellular signaling sequence remains incomplete. Here we used nuclear magnetic resonance (NMR) spectroscopy combined with mutational analysis and computational docking to derive a structural model of the extracellular TCR-CD3 assembly. In the inactivated state, CD3gammaepsilon interacts with the helix 3 and helix 4-F strand regions of the TCR Cbeta subunit, whereas CD3deltaepsilon interacts with the F and C strand regions of the TCR Calpha subunit in this model, placing the CD3 subunits on opposing sides of the TCR. This work identifies the molecular contacts between the TCR and CD3 subunits, identifying a physical basis for transmitting an activating signal through the complex.
PMCID:4902171
PMID: 26997265
ISSN: 2211-1247
CID: 2051952

Constitutive LcK activity drives sensitivity differences between CD8+memory T cell subsets [Meeting Abstract]

Krogsgaard, Michelle; Moogk, Duane; Zhong, Shi; Rittase, William; Fang, Victoria; Dougherty, Janna; Perez-Garcia, Arianne; Osman, Iman; Zhu, Cheng; Varadarajan, Navin; Restifo, Nicholas P; Frey, Alan B
ISI:000380288302078
ISSN: 1550-6606
CID: 2220222

Melanoma expression of matrix metalloproteinase-23 is associated with blunted tumor immunity and poor responses to immunotherapy

Moogk, Duane; da Silva, Ines; Ma, Michelle W; Friedman, Erica B; de Miera, Eleazar; Darvishian, Farbod; Scanlon, Patrick; Perez-Garcia, Arianne; Pavlick, Anna C; Bhardwaj, Nina; Christos, Paul J; Osman, Iman; Krogsgaard, Michelle
BackgroundMatrix metalloproteinase-23 (MMP-23) can block the voltage-gated potassium channel Kv1.3, whose function is important for sustained Ca2+ signaling during T cell activation. MMP-23 may also alter T cell activity and phenotype through cleavage of proteins affecting cytokine and chemokine signaling. We therefore tested the hypothesis that MMP-23 can negatively regulate the anti-tumor T cell response in human melanoma.MethodsWe characterized MMP-23 expression in primary melanoma patients who received adjuvant immunotherapy. We examined the association of MMP-23 with the anti-tumor immune response - as assessed by the prevalence of tumor-infiltrating lymphocytes and Foxp3+ regulatory T cells. Further, we examined the association between MMP-23 expression and response to immunotherapy. Considering also an in trans mechanism, we examined the association of melanoma MMP-23 and melanoma Kv1.3 expression.ResultsOur data revealed an inverse association between primary melanoma MMP-23 expression and the anti-tumor T cell response, as demonstrated by decreased tumor-infiltrating lymphocytes (TIL) (P inverted question mark= inverted question mark0.05), in particular brisk TILs (P inverted question mark= inverted question mark0.04), and a trend towards an increased proportion of immunosuppressive Foxp3+ regulatory T cells (P inverted question mark= inverted question mark0.07). High melanoma MMP-23 expression is also associated with recurrence in patients treated with immune biologics (P inverted question mark= inverted question mark0.037) but not in those treated with vaccines (P inverted question mark= inverted question mark0.64). Further, high melanoma MMP-23 expression is associated with shorter periods of progression-free survival for patients receiving immune biologics (P inverted question mark= inverted question mark0.025). On the other hand, there is no relationship between melanoma MMP-23 and melanoma Kv1.3 expression (P inverted question mark= inverted question mark0.27).ConclusionsOur data support a role for MMP-23 as a potential immunosuppressive target in melanoma, as well as a possible biomarker for informing melanoma immunotherapies.
PMCID:4272770
PMID: 25491880
ISSN: 1479-5876
CID: 1393652