Searched for: in-biosketch:yes
person:lees40
Brain-Wide Insulin Resistance, Tau Phosphorylation Changes, and Hippocampal Neprilysin and Amyloid-beta Alterations in a Monkey Model of Type 1 Diabetes
Morales-Corraliza, Jose; Wong, Harrison; Mazzella, Matthew J; Che, Shaoli; Lee, Sang Han; Petkova, Eva; Wagner, Janice D; Hemby, Scott E; Ginsberg, Stephen D; Mathews, Paul M
Epidemiological findings suggest that diabetic individuals are at a greater risk for developing Alzheimer's disease (AD). To examine the mechanisms by which diabetes mellitus (DM) may contribute to AD pathology in humans, we examined brain tissue from streptozotocin-treated type 1 diabetic adult male vervet monkeys receiving twice-daily exogenous insulin injections for 8-20 weeks. We found greater inhibitory phosphorylation of insulin receptor substrate 1 in each brain region examined of the diabetic monkeys when compared with controls, consistent with a pattern of brain insulin resistance that is similar to that reported in the human AD brain. Additionally, a widespread increase in phosphorylated tau was seen, including brain areas vulnerable in AD, as well as relatively spared structures, such as the cerebellum. An increase in active ERK1/2 was also detected, consistent with DM leading to changes in tau-kinase activity broadly within the brain. In contrast to these widespread changes, we found an increase in soluble amyloid-beta (Abeta) levels that was restricted to the temporal lobe, with the greatest increase seen in the hippocampus. Consistent with this localized Abeta increase, a hippocampus-restricted decrease in the protein and mRNA for the Abeta-degrading enzyme neprilysin (NEP) was found, whereas various Abeta-clearing and -degrading proteins were unchanged. Thus, we document multiple biochemical changes in the insulin-controlled DM monkey brain that can link DM with the risk of developing AD, including dysregulation of the insulin-signaling pathway, changes in tau phosphorylation, and a decrease in NEP expression in the hippocampus that is coupled with a localized increase in Abeta. SIGNIFICANCE STATEMENT: Given that diabetes mellitus (DM) appears to increase the risk of developing Alzheimer's disease (AD), understanding the mechanisms by which DM promotes AD is important. We report that DM in a nonhuman primate brain leads to changes in the levels or posttranslational processing of proteins central to AD pathobiology, including tau, amyloid-beta (Abeta), and the Abeta-degrading protease neprilysin. Additional evidence from this model suggests that alterations in brain insulin signaling occurred that are reminiscent of insulin signaling pathway changes seen in human AD. Thus, in anin vivomodel highly relevant to humans, we show multiple alterations in the brain resulting from DM that are mechanistically linked to AD risk.
PMCID:4829649
PMID: 27076423
ISSN: 1529-2401
CID: 2077582
Predicting progression from mild cognitive impairment to Alzheimer's disease using longitudinal callosal atrophy
Lee, Sang Han; Bachman, Alvin H; Yu, Donghyeon; Lim, Johan; Ardekani, Babak A
INTRODUCTION: We investigate whether longitudinal callosal atrophy could predict conversion from mild cognitive impairment (MCI) to Alzheimer's disease (AD). METHODS: Longitudinal (baseline + 1-year follow-up) MRI scans of 132 MCI subjects from the Alzheimer's Disease Neuroimaging Initiative were used. A total of 54 subjects did not convert to AD over an average (+/-SD) follow-up of 5.46 (+/-1.63) years, whereas 78 converted to AD with an average conversion time of 2.56 (+/-1.65) years. Annual change in the corpus callosum thickness profile was calculated from the baseline and 1-year follow-up MRI. A logistic regression model with fused lasso regularization for prediction was applied to the annual changes. RESULTS: We found a sex difference. The accuracy of prediction was 84% in females and 61% in males. The discriminating regions of corpus callosum differed between sexes. In females, the genu, rostrum, and posterior body had predictive power, whereas the genu and splenium were relevant in males. DISCUSSION: Annual callosal atrophy predicts MCI-to-AD conversion in females more accurately than in males.
PMCID:4879655
PMID: 27239537
ISSN: 2352-8729
CID: 2124742
Implicit emotion perception in schizophrenia
Tremeau, Fabien; Antonius, Daniel; Todorov, Alexander; Rebani, Yasmina; Ferrari, Kelsey; Lee, Sang Han; Calderone, Daniel; Nolan, Karen A; Butler, Pamela; Malaspina, Dolores; Javitt, Daniel C
Explicit but not implicit facial emotion perception has been shown to be impaired in schizophrenia. In this study, we used newly developed technology in social neuroscience to examine implicit emotion processing. It has been shown that when people look at faces, they automatically infer social traits, and these trait judgments rely heavily on facial features and subtle emotion expressions even with neutral faces. Eighty-one individuals with schizophrenia or schizoaffective disorder and 62 control subjects completed a computer task with 30 well-characterized neutral faces. They rated each face on 10 trait judgments: attractive, mean, trustworthy, intelligent, dominant, fun, sociable, aggressive, emotionally stable and weird. The degree to which trait ratings were predicted by objectively-measured subtle emotion expressions served as a measure of implicit emotion processing. Explicit emotion recognition was also examined. Trait ratings were significantly predicted by subtle facial emotional expressions in controls and patients. However, impairment in the implicit emotion perception of fear, happiness, anger and surprise was found in patients. Moreover, these deficits were associated with poorer everyday problem-solving skills and were relatively independent of explicit emotion recognition. Implicit emotion processing is impaired in patients with schizophrenia or schizoaffective disorder. Deficits in implicit and explicit emotion perception independently contribute to the patients' poor daily life skills. More research is needed to fully understand the role of implicit and explicit processes in the functional deficits of patients, in order to develop targeted and useful remediation interventions.
PMID: 26473695
ISSN: 1879-1379
CID: 1803782
Expression profile analysis of hippocampal CA1 pyramidal neurons in aged Ts65Dn mice, a model of Down syndrome (DS) and Alzheimer's disease (AD)
Alldred, Melissa J; Lee, Sang Han; Petkova, Eva; Ginsberg, Stephen D
Down syndrome (DS) is caused by the triplication of human chromosome 21 (HSA21) and is the most common genetic cause of intellectual disability, with individuals having deficits in cognitive function including hippocampal learning and memory and neurodegeneration of cholinergic basal forebrain neurons, a pathological hallmark of Alzheimer's disease (AD). To date, the molecular underpinnings driving this pathology have not been elucidated. The Ts65Dn mouse is a segmental trisomy model of DS and like DS/AD pathology, displays age-related cognitive dysfunction and basal forebrain cholinergic neuron (BFCN) degeneration. To determine molecular and cellular changes important for elucidating mechanisms of neurodegeneration in DS/AD pathology, expression profiling studies were performed. Molecular fingerprinting of homogeneous populations of Cornu Ammonis 1 (CA1) pyramidal neurons was performed via laser capture microdissection followed by Terminal Continuation RNA amplification combined with custom-designed microarray analysis and subsequent validation of individual transcripts by qPCR and protein analysis via immunoblotting. Significant alterations were observed within CA1 pyramidal neurons of aged Ts65Dn mice compared to normal disomic (2N) littermates, notably in excitatory and inhibitory neurotransmission receptor families and neurotrophins, including brain-derived neurotrophic factor as well as several cognate neurotrophin receptors. Examining gene and protein expression levels after the onset of BFCN degeneration elucidated transcriptional and translational changes in neurons within a vulnerable circuit that may cause the AD-like pathology seen in DS as these individuals age, and provide rational targets for therapeutic interventions.
PMCID:4297601
PMID: 25031177
ISSN: 1863-2653
CID: 1071192
Imaging-Based Features of Headaches in Chiari Malformation Type I
Alperin, Noam; Loftus, James R; Oliu, Carlos J; Bagci, Ahmet M; Lee, Sang H; Ertl-Wagner, Birgit; Sekula, Raymond; Lichtor, Terry; Green, Barth A
BACKGROUND:Suboccipital cough-induced headaches are considered a hallmark symptom of Chiari malformation type I (CMI). However, non--Valsalva-related suboccipital headaches and headaches in other locations are also common in CMI. The diagnostic significance and the underlying factors associated with these different headaches types are not well understood. OBJECTIVE:To compare cranial morphology and hydrodynamics in 3 types of headaches in CMI to better understand the pathophysiological basis for the different headache characteristics. METHODS:Twenty-two cranial physiological and morphological measures were obtained with specialized magnetic resonance imaging scans from 63 symptomatic pretreated CMI patients, 40 with suboccipital headaches induced by Valsalva maneuvers (34 women; age, 36 ± 10 years), 15 with non--Valsalva-related suboccipital headaches (10 women; age, 33 ± 9 years), 8 with nonsuboccipital non--Valsalva-induced headaches (8 women; age, 39 ± 13 years), and 37 control subjects (24 women; age, 36 ± 12 years). Group differences were identified with the use of the 2-tailed Student t test. RESULTS:Posterior cranial fossa markers of CMI were similar among the 3 headache subtypes. However, the Valsalva-related suboccipital headaches cohort demonstrated a significantly lower intracranial compliance index than the non--Valsalva-related suboccipital headaches cohort (7.5 ± 3.4 vs 10.9 ± 4.9), lower intracranial volume change during the cardiac cycle (0.48 ± 0.19 vs 0.61 ± 0.16 mL), and higher magnetic resonance imaging--derived intracranial pressure (11.1 ± 4.3 vs 7.7 ± 2.8 mm Hg; P = .02). The Valsalva-related suboccipital headaches cohort had smaller intracranial and lateral ventricular volumes compared with the healthy cohort. The non--Valsalva-related suboccipital headaches cohort had reduced venous drainage through the jugular veins. CONCLUSION/CONCLUSIONS:Valsalva-induced worsening of occipital headaches appears to be related to a small intracranial volume rather than the smaller posterior cranial fossa. This explains the reduced intracranial compliance and corresponding higher pressure measured in CMI patients with headaches affected by Valsalva maneuvers.
PMCID:4854289
PMID: 25812067
ISSN: 1524-4040
CID: 5761522
Reduction of beta-amyloid and gamma-secretase by calorie restriction in female Tg2576 mice
Schafer, Marissa J; Alldred, Melissa J; Lee, Sang Han; Calhoun, Michael E; Petkova, Eva; Mathews, Paul M; Ginsberg, Stephen D
Research indicates that female risk of developing Alzheimer's disease (AD) is greater than that of males. Moderate reduction of calorie intake, known as calorie restriction (CR), reduces pathology in AD mouse models and is a potentially translatable prevention measure for individuals at-risk for AD, as well as an important tool for understanding how the brain endogenously attenuates age-related pathology. Whether sex influences the response to CR remains unknown. In this study, we assessed the effect of CR on beta-amyloid peptide (Abeta) pathology and hippocampal CA1 neuron specific gene expression in the Tg2576 mouse model of cerebral amyloidosis. Relative to ad libitum (AL) feeding, CR feeding significantly reduced hippocampal Abeta burden in 15-month-old female, but not age-matched male, Tg2576 mice. Sustained CR also significantly reduced expression of presenilin enhancer 2 (Psenen) and presenilin 1, components of the gamma-secretase complex, in Tg2576 females. These results indicate that long-term CR significantly reduces age-dependent female Tg2576 Abeta pathology, which is likely to involve CR-mediated reductions in gamma-secretase-dependent amyloid precursor protein (APP) metabolism.
PMCID:4346433
PMID: 25556162
ISSN: 0197-4580
CID: 1420202
Adverse performance effects of acute lorazepam administration in elderly long-term users: Pharmacokinetic and clinical predictors
Pomara, Nunzio; Lee, Sang Han; Bruno, Davide; Silber, Timothy; Greenblatt, David J; Petkova, Eva; Sidtis, John J
BACKGROUND: The benzodiazepine lorazepam is widely utilized in the treatment of elderly individuals with anxiety disorders and related conditions. Negative effects of acute lorazepam administration on cognitive performance, especially memory, have been reported in both previously untreated elderly and in individuals who have received short term (up to three weeks) treatment with therapeutic doses. However, it remains unclear if these adverse cognitive effects also persist after long-term use, which is frequently found in clinical practice. METHODS: Cognitively intact elderly individuals (n=37) on long-term (at least three months) daily treatment with lorazepam were studied using a double-blind placebo-controlled cross-over study design. Subjects were administered their highest daily unit dose of lorazepam (0.25 - 3.00mg) or placebo on different days, approximately 1week apart in a random order, and were assessed on memory, psychomotor speed, and subjective mood states. RESULTS: Subjects had significantly poorer recall and slowed psychomotor performance following acute lorazepam administration. There were no significant effects on self-ratings of mood, sedation, or anxiety in the whole group, but secondary analyses suggested a differential response in subjects with Generalized Anxiety Disorder. CONCLUSIONS: The reduced recall and psychomotor slowing that we observed, along with an absence of significant therapeutic benefits, following acute lorazepam administration in elderly long-term users reinforces the importance of cognitive toxicity as a clinical factor in benzodiazepine use, especially in this population.
PMCID:4258460
PMID: 25195839
ISSN: 0278-5846
CID: 1181302
Expression profile analysis of vulnerable CA1 pyramidal neurons in young-middle aged Ts65Dn mice
Alldred, Melissa J; Lee, Sang Han; Petkova, Eva; Ginsberg, Stephen D
Down syndrome (DS) is the most prevalent cause of intellectual disability (ID). Individuals with DS show a variety of cognitive deficits, most notably in hippocampal learning and memory, and display pathological hallmarks of Alzheimer's disease (AD), with neurodegeneration of cholinergic basal forebrain (CBF) neurons. Elucidation of the molecular and cellular underpinnings of neuropathology has been assessed via gene expression analysis in a relevant animal model, termed the Ts65Dn mouse. The Ts65Dn mouse is a segmental trisomy model of DS which mimics DS/AD pathology, notably age-related cognitive dysfunction and degeneration of basal forebrain cholinergic neurons (BFCNs). To determine expression level changes, molecular fingerprinting of Cornu Ammonis 1 (CA1) pyramidal neurons was performed in adult (4-9 month old) Ts65Dn mice, at the initiation of BFCN degeneration. To quantitate transcriptomic changes during this early time period, laser capture microdissection (LCM), terminal continuation (TC) RNA amplification, custom-designed microarray analysis, and subsequent validation of individual transcripts by qPCR and protein analysis via immunoblotting was performed. Results indicate significant alterations within CA1 pyramidal neurons of Ts65Dn mice compared to normal disomic (2N) littermates, notably in the downregulation of neurotrophins and their cognate neurotrophin receptors among other classes of transcripts relevant to neurodegeneration. These results of this single population gene expression analysis at the time of septohippocampal deficits in a trisomic mouse model shed light on a vulnerable circuit that may cause the AD-like pathology invariably seen in DS that could help to identify mechanisms of degeneration, and provide novel gene targets for therapeutic interventions. J. Comp. Neurol., 2014. (c) 2014 Wiley Periodicals, Inc.
PMCID:4232465
PMID: 25131634
ISSN: 0021-9967
CID: 1142212
Corpus Callosum Atrophy Rate in Mild Cognitive Impairment and Prodromal Alzheimer's Disease
Elahi, Sahar; Bachman, Alvin H; Lee, Sang Han; Sidtis, John J; Ardekani, Babak A
Background: Corpus callosum (CC) size and shape have been previously studied in Alzheimer's disease (AD) with the majority of studies having been cross-sectional. Due to the large variance in normal CC morphology, cross-sectional studies are limited in statistical power. Determining individual rates of change requires longitudinal data. Physiological changes are particularly relevant in mild cognitive impairment (MCI), in which CC morphology has not been previously studied longitudinally. Objective: To study temporal rates of change in CC morphology in MCI patients over a one-year period, and to determine whether these rates differ between MCI subjects who converted to AD (MCI-C) and those who did not (MCI-NC) over an average (+/-SD) observation period of 5.4 (+/-1.6) years. Methods: We used a novel multi-atlas based algorithm to segment the mid-sagittal cross-sectional area of the CC in longitudinal MRI scans. Rates of change of CC circularity, total area, and five sub-areas were compared between 57 MCI-NC and 81 MCI-C subjects. Results: The CC became less circular (-0.89% per year in MCI-NC, -1.85% per year in MCI-C) with time, with faster decline in MCI-C (p = 0.0002). In females, atrophy rates were higher in MCI-C relative to MCI-NC in total CC area (p = 0.0006), genu/rostrum (p = 0.005), and splenium (0.002). In males, these rates did not differ between groups. Conclusion: A greater than normal decline in CC circularity was shown to be an indicator of prodromal AD in MCI subjects. This measure is potentially useful as an imaging biomarker of disease and a therapeutic target in clinical trials.
PMCID:4451933
PMID: 25633676
ISSN: 1387-2877
CID: 1447922
Increased CSF Matrix Metalloproteinase-9 (MMP-9) and Reduced White Matter Integrity with Increasing Age in Late-life Major Depression [Meeting Abstract]
Pomara, Nunzio; Reichert, Chelsea; Lee, Sang Han; Nierenberg, Jay; Halliday, Matthew R; Sagare, Abhay P; Frangione, Blas; Zlokovic, Berislav V
ISI:000345905001053
ISSN: 1740-634x
CID: 1424592