Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:mathep01

Total Results:

97


Calpastatin modulates APP processing in the brains of beta-amyloid depositing but not wild-type mice

Morales-Corraliza, Jose; Berger, Jason D; Mazzella, Matthew J; Neubert, Thomas A; Ghiso, Jorge; Rao, Mala V; Staufenbiel, Matthias; Nixon, Ralph A; Mathews, Paul M
We report that neuronal overexpression of the endogenous inhibitor of calpains, calpastatin (CAST), in a mouse model of human Alzheimer's disease (AD) beta-amyloidosis, the APP23 mouse, reduces beta-amyloid (Abeta) pathology and Abeta levels when comparing aged, double transgenic (tg) APP23/CAST with APP23 mice. Concurrent with Abeta plaque deposition, aged APP23/CAST mice show a decrease in the steady-state brain levels of the amyloid precursor protein (APP) and APP C-terminal fragments (CTFs) when compared with APP23 mice. This CAST-dependent decrease in APP metabolite levels was not observed in single tg CAST mice expressing endogenous APP or in younger, Abeta plaque predepositing APP23/CAST mice. We also determined that the CAST-mediated inhibition of calpain activity in the brain is greater in the CAST mice with Abeta pathology than in non-APP tg mice, as demonstrated by a decrease in calpain-mediated cytoskeleton protein cleavage. Moreover, aged APP23/CAST mice have reduced extracellular signal-regulated kinase 1/2 (ERK1/2) activity and tau phosphorylation when compared with APP23 mice. In summary, in vivo calpain inhibition mediated by CAST transgene expression reduces Abeta pathology in APP23 mice, with our findings further suggesting that APP metabolism is modified by CAST overexpression as the mice develop Abeta pathology. Our results indicate that the calpain system in neurons is more responsive to CAST inhibition under conditions of Abeta pathology, suggesting that in the disease state neurons may be more sensitive to the therapeutic use of calpain inhibitors.
PMCID:3318946
PMID: 22206846
ISSN: 0197-4580
CID: 164336

Tissue processing prior to analysis of Alzheimer's disease associated proteins and metabolites, including abeta

Schmidt, Stephen D; Nixon, Ralph A; Mathews, Paul M
Amyloid-containing tissue, whether from human patients or an animal model of a disease, is typically characterized by various biochemical and immunohistochemical techniques, many of which are described in detail in this volume. In this chapter, we describe a straightforward technique for the homogenization of tissue prior to these analyses. The technique is particularly well suited for performing a large number of different biochemical analyses on a single mouse brain hemisphere. Starting with this homogenate multiple characterizations can be done, including western blot analysis and isolation of membrane-associated proteins, both of which are described here. Additional analyses can readily be performed on the tissue homogenate, including the ELISA quantitation of Abeta in the brain of a transgenic mouse model of beta-amyloid deposition. The ELISA technique is described in detail in Chapter 34 .
PMID: 22528111
ISSN: 1064-3745
CID: 166105

Abeta measurement by enzyme-linked immunosorbent assay

Schmidt, Stephen D; Mazzella, Matthew J; Nixon, Ralph A; Mathews, Paul M
The neuritic plaque in the brain of Alzheimer's disease patients consists of an amyloid composed primarily of Abeta, an approximately 4-kDa peptide derived from the amyloid precursor protein. Multiple lines of evidence suggest that Abeta plays a key role in the pathogenesis of the disease, and potential treatments that target Abeta production and/or Abeta accumulation in the brain as beta-amyloid are being aggressively pursued. Methods to quantitate the Abeta peptide are, therefore, invaluable to most studies aimed at a better understanding of the molecular etiology of the disease and in assessing potential therapeutics. Although other techniques have been used to measure Abeta in the brains of AD patients and beta-amyloid-depositing transgenic mice, the enzyme-linked immunosorbent assay (ELISA) is one of the most commonly used, reliable, and sensitive methods for quantitating the Abeta peptide. Here we describe methods for the recovery of both soluble and deposited Abeta from brain tissue and the subsequent quantitation of the peptide by sandwich ELISA.
PMID: 22528112
ISSN: 1064-3745
CID: 166104

Alzheimer-specific variants in the 3'UTR of Amyloid precursor protein affect microRNA function

Delay, Charlotte; Calon, Frederic; Mathews, Paul; Hebert, Sebastien S
ABSTRACT: BACKGROUND: APP expression misregulation can cause genetic Alzheimer's disease (AD). Recent evidences support the hypothesis that polymorphisms located in microRNA (miRNA) target sites could influence the risk of developing neurodegenerative disorders such as Parkinson's disease (PD) and frontotemporal dementia. Recently, a number of single nucleotide polymorphisms (SNPs) located in the 3'UTR of APP have been found in AD patients with family history of dementia. Because miRNAs have previously been implicated in APP expression regulation, we set out to determine whether these polymorphisms could affect miRNA function and therefore APP levels. RESULTS: Bioinformatics analysis identified twelve putative miRNA bindings sites located in or near the APP 3'UTR variants T117C, A454G and A833C. Among those candidates, seven miRNAs, including miR-20a, miR-17, miR-147, miR-655, miR-323-3p, miR-644, and miR-153 could regulate APP expression in vitro and under physiological conditions in cells. Using luciferase-based assays, we could show that the T117C variant inhibited miR-147 binding, whereas the A454G variant increased miR-20a binding, consequently having opposite effects on APP expression. CONCLUSIONS: Taken together, our results provide proof-of-principle that APP 3'UTR polymorphisms could affect AD risk through modulation of APP expression regulation, and set the stage for further association studies in genetic and sporadic AD
PMCID:3195754
PMID: 21982160
ISSN: 1750-1326
CID: 140551

Synaptic Autoregulation by Metalloproteases and {gamma}-Secretase

Restituito, Sophie; Khatri, Latika; Ninan, Ipe; Mathews, Paul M; Liu, Xin; Weinberg, Richard J; Ziff, Edward B
The proteolytic machinery comprising metalloproteases and gamma-secretase, an intramembrane aspartyl protease involved in Alzheimer's disease, cleaves several substrates in addition to the extensively studied amyloid precursor protein. Some of these substrates, such as N-cadherin, are synaptic proteins involved in synapse remodeling and maintenance. Here we show, in rats and mice, that metalloproteases and gamma-secretase are physiologic regulators of synapses. Both proteases are synaptic, with gamma-secretase tethered at the synapse by delta-catenin, a synaptic scaffolding protein that also binds to N-cadherin and, through scaffolds, to AMPA receptor and a metalloprotease. Activity-dependent proteolysis by metalloproteases and gamma-secretase takes place at both sides of the synapse, with the metalloprotease cleavage being NMDA receptor-dependent. This proteolysis decreases levels of synaptic proteins and diminishes synaptic transmission. Our results suggest that activity-dependent substrate cleavage by synaptic metalloproteases and gamma-secretase modifies synaptic transmission, providing a novel form of synaptic autoregulation
PMCID:3169340
PMID: 21865451
ISSN: 1529-2401
CID: 136951

Therapeutic effects of remediating autophagy failure in a mouse model of Alzheimer disease by enhancing lysosomal proteolysis

Yang, Dun-Sheng; Stavrides, Philip; Mohan, Panaiyur S; Kaushik, Susmita; Kumar, Asok; Ohno, Masuo; Schmidt, Stephen D; Wesson, Daniel W; Bandyopadhyay, Urmi; Jiang, Ying; Pawlik, Monika; Peterhoff, Corrinne M; Yang, Austin J; Wilson, Donald A; St George-Hyslop, Peter; Westaway, David; Mathews, Paul M; Levy, Efrat; Cuervo, Ana M; Nixon, Ralph A
The extensive autophagic-lysosomal pathology in Alzheimer disease (AD) brain has revealed a major defect: in the proteolytic clearance of autophagy substrates. Autophagy failure contributes on several levels to AD pathogenesis and has become an important therapeutic target for AD and other neurodegenerative diseases. We recently observed broad therapeutic effects of stimulating autophagic-lysosomal proteolysis in the TgCRND8 mouse model of AD that exhibits defective proteolytic clearance of autophagic substrates, robust intralysosomal amyloid-beta peptide (Abeta) accumulation, extracellular beta-amyloid deposition and cognitive deficits. By genetically deleting the lysosomal cysteine protease inhibitor, cystatin B (CstB), to selectively restore depressed cathepsin activities, we substantially cleared Abeta, ubiquitinated proteins and other autophagic substrates from autolysosomes/lysosomes and rescued autophagic-lysosomal pathology, as well as reduced total Abeta40/42 levels and extracellular amyloid deposition, highlighting the underappreciated importance of the lysosomal system for Abeta clearance. Most importantly, lysosomal remediation prevented the marked learning and memory deficits in TgCRND8 mice. Our findings underscore the pathogenic significance of autophagic-lysosomal dysfunction in AD and demonstrate the value of reversing this dysfunction as an innovative therapeautic strategy for AD
PMCID:3359468
PMID: 21464620
ISSN: 1554-8635
CID: 134440

Reversal of autophagy dysfunction in the TgCRND8 mouse model of Alzheimer's disease ameliorates amyloid pathologies and memory deficits

Yang, Dun-Sheng; Stavrides, Philip; Mohan, Panaiyur S; Kaushik, Susmita; Kumar, Asok; Ohno, Masuo; Schmidt, Stephen D; Wesson, Daniel; Bandyopadhyay, Urmi; Jiang, Ying; Pawlik, Monika; Peterhoff, Corrinne M; Yang, Austin J; Wilson, Donald A; St George-Hyslop, Peter; Westaway, David; Mathews, Paul M; Levy, Efrat; Cuervo, Ana M; Nixon, Ralph A
Autophagy, a major degradative pathway for proteins and organelles, is essential for survival of mature neurons. Extensive autophagic-lysosomal pathology in Alzheimer's disease brain contributes to Alzheimer's disease pathogenesis, although the underlying mechanisms are not well understood. Here, we identified and characterized marked intraneuronal amyloid-beta peptide/amyloid and lysosomal system pathology in the Alzheimer's disease mouse model TgCRND8 similar to that previously described in Alzheimer's disease brains. We further establish that the basis for these pathologies involves defective proteolytic clearance of neuronal autophagic substrates including amyloid-beta peptide. To establish the pathogenic significance of these abnormalities, we enhanced lysosomal cathepsin activities and rates of autophagic protein turnover in TgCRND8 mice by genetically deleting cystatin B, an endogenous inhibitor of lysosomal cysteine proteases. Cystatin B deletion rescued autophagic-lysosomal pathology, reduced abnormal accumulations of amyloid-beta peptide, ubiquitinated proteins and other autophagic substrates within autolysosomes/lysosomes and reduced intraneuronal amyloid-beta peptide. The amelioration of lysosomal function in TgCRND8 markedly decreased extracellular amyloid deposition and total brain amyloid-beta peptide 40 and 42 levels, and prevented the development of deficits of learning and memory in fear conditioning and olfactory habituation tests. Our findings support the pathogenic significance of autophagic-lysosomal dysfunction in Alzheimer's disease and indicate the potential value of restoring normal autophagy as an innovative therapeutic strategy for Alzheimer's disease
PMCID:3009842
PMID: 21186265
ISSN: 1460-2156
CID: 126481

Catabolism of Alzheimer's amyloid-b: Implications for brain clearance and plaque deposition [Meeting Abstract]

McIntee F.L.; Giannoni P.; Blais S.; Neubert T.; Mathews P.; Rostagno A.; Ghiso J.
Alzheimer's disease (AD) is the leading cause of dementia and the most common form of amyloidosis in humans. Extensive extracellular deposition of amyloid-beta (Abeta), a 40-42 amino acid degradation product of APP, is considered a hallmark feature of AD. Our attention is focused on the highly heterogeneous biochemical nature of the brain Abeta species, delving beyond Abeta40 and Abeta42, likely reflecting a complex balance between amyloidogenic and clearance pathways. We have fractionated water-soluble, detergent-soluble and formic acid soluble Abeta species from brains of transgenic mouse models of amyloid depostion and AD cases. Subsequently, we applied a combination of biochemical techniques including immunoprecipitation followed by identification of Abeta species with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Our biochemical data on the Abeta species present in sporadic AD cases and in transgenic mouse models highlight the presence of similar N-and C-terminally truncated fragments-likely reflecting the ability of multiple proteases to degrade Abeta in situ-and several post-translational modifications with still unclear roles in the amyloidogenesis mechanism. Notably, not all the brain Abeta peptides have identical solubility properties; whereas many of them are highly soluble in water-based physiologic solutions others require mild detergents or strong acids for extraction, suggesting their differential involvement in catabolic and fibrillogenic processes
EMBASE:70486909
ISSN: 1660-2854
CID: 136531

Modeling familial Danish dementia in mice supports the concept of the amyloid hypothesis of Alzheimer's disease

Coomaraswamy, Janaky; Kilger, Ellen; Wolfing, Heidrun; Schafer, Claudia; Kaeser, Stephan A; Wegenast-Braun, Bettina M; Hefendehl, Jasmin K; Wolburg, Hartwig; Mazzella, Matthew; Ghiso, Jorge; Goedert, Michel; Akiyama, Haruhiko; Garcia-Sierra, Francisco; Wolfer, David P; Mathews, Paul M; Jucker, Mathias
Familial Danish dementia (FDD) is a progressive neurodegenerative disease with cerebral deposition of Dan-amyloid (ADan), neuroinflammation, and neurofibrillary tangles, hallmark characteristics remarkably similar to those in Alzheimer's disease (AD). We have generated transgenic (tg) mouse models of familial Danish dementia that exhibit the age-dependent deposition of ADan throughout the brain with associated amyloid angiopathy, microhemorrhage, neuritic dystrophy, and neuroinflammation. Tg mice are impaired in the Morris water maze and exhibit increased anxiety in the open field. When crossed with TauP301S tg mice, ADan accumulation promotes neurofibrillary lesions, in all aspects similar to the Tau lesions observed in crosses between beta-amyloid (Abeta)-depositing tg mice and TauP301S tg mice. Although these observations argue for shared mechanisms of downstream pathophysiology for the sequence-unrelated ADan and Abeta peptides, the lack of codeposition of the two peptides in crosses between ADan- and Abeta-depositing mice points also to distinguishing properties of the peptides. Our results support the concept of the amyloid hypothesis for AD and related dementias, and suggest that different proteins prone to amyloid formation can drive strikingly similar pathogenic pathways in the brain
PMCID:2867864
PMID: 20385796
ISSN: 1091-6490
CID: 137823

Alzheimer's-related endosome dysfunction in Down syndrome is Abeta-independent but requires APP and is reversed by BACE-1 inhibition

Jiang, Ying; Mullaney, Kerry A; Peterhoff, Corrinne M; Che, Shaoli; Schmidt, Stephen D; Boyer-Boiteau, Anne; Ginsberg, Stephen D; Cataldo, Anne M; Mathews, Paul M; Nixon, Ralph A
An additional copy of the beta-amyloid precursor protein (APP) gene causes early-onset Alzheimer's disease (AD) in trisomy 21 (DS). Endosome dysfunction develops very early in DS and AD and has been implicated in the mechanism of neurodegeneration. Here, we show that morphological and functional endocytic abnormalities in fibroblasts from individuals with DS are reversed by lowering the expression of APP or beta-APP-cleaving enzyme 1 (BACE-1) using short hairpin RNA constructs. By contrast, endosomal pathology can be induced in normal disomic (2N) fibroblasts by overexpressing APP or the C-terminal APP fragment generated by BACE-1 (betaCTF), all of which elevate the levels of betaCTFs. Expression of a mutant form of APP that cannot undergo beta-cleavage had no effect on endosomes. Pharmacological inhibition of APP gamma-secretase, which markedly reduced Abeta production but raised betaCTF levels, also induced AD-like endosome dysfunction in 2N fibroblasts and worsened this pathology in DS fibroblasts. These findings strongly implicate APP and the betaCTF of APP, and exclude Abeta and the alphaCTF, as the cause of endocytic pathway dysfunction in DS and AD, underscoring the potential multifaceted value of BACE-1 inhibition in AD therapeutics
PMCID:2824382
PMID: 20080541
ISSN: 1091-6490
CID: 126490