Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:mauram01

Total Results:

40


Large-scale identification of sequence variants influencing human transcription factor occupancy in vivo

Maurano, Matthew T; Haugen, Eric; Sandstrom, Richard; Vierstra, Jeff; Shafer, Anthony; Kaul, Rajinder; Stamatoyannopoulos, John A
The function of human regulatory regions depends exquisitely on their local genomic environment and on cellular context, complicating experimental analysis of common disease- and trait-associated variants that localize within regulatory DNA. We use allelically resolved genomic DNase I footprinting data encompassing 166 individuals and 114 cell types to identify >60,000 common variants that directly influence transcription factor occupancy and regulatory DNA accessibility in vivo. The unprecedented scale of these data enables systematic analysis of the impact of sequence variation on transcription factor occupancy in vivo. We leverage this analysis to develop accurate models of variation affecting the recognition sites for diverse transcription factors and apply these models to discriminate nearly 500,000 common regulatory variants likely to affect transcription factor occupancy across the human genome. The approach and results provide a new foundation for the analysis and interpretation of noncoding variation in complete human genomes and for systems-level investigation of disease-associated variants.
PMCID:4666772
PMID: 26502339
ISSN: 1546-1718
CID: 1819482

Role of DNA Methylation in Modulating Transcription Factor Occupancy

Maurano, Matthew T; Wang, Hao; John, Sam; Shafer, Anthony; Canfield, Theresa; Lee, Kristen; Stamatoyannopoulos, John A
Although DNA methylation is commonly invoked as a mechanism for transcriptional repression, the extent to which it actively silences transcription factor (TF) occupancy sites in vivo is unknown. To study the role of DNA methylation in the active modulation of TF binding, we quantified the effect of DNA methylation depletion on the genomic occupancy patterns of CTCF, an abundant TF with known methylation sensitivity that is capable of autonomous binding to its target sites in chromatin. Here, we show that the vast majority (>98.5%) of the tens of thousands of unoccupied, methylated CTCF recognition sequences remain unbound upon abrogation of DNA methylation. The small fraction of sites that show methylation-dependent binding in vivo are in turn characterized by highly variable CTCF occupancy across cell types. Our results suggest that DNA methylation is not a primary groundskeeper of genomic TF landscapes, but rather a specialized mechanism for stabilizing intrinsically labile sites.
PMID: 26257180
ISSN: 2211-1247
CID: 1744672

Taking Stock of Regulatory Variation

Maurano, Matthew T; Stamatoyannopoulos, John A
Three recent studies measure individual variation in regulatory DNA accessibility. What do they tell us about the prospects of assessing variation in single cells and across populations?
PMID: 27135686
ISSN: 2405-4712
CID: 2100802

Genomic discovery of potent chromatin insulators for human gene therapy

Liu, Mingdong; Maurano, Matthew T; Wang, Hao; Qi, Heyuan; Song, Chao-Zhong; Navas, Patrick A; Emery, David W; Stamatoyannopoulos, John A; Stamatoyannopoulos, George
Insertional mutagenesis and genotoxicity, which usually manifest as hematopoietic malignancy, represent major barriers to realizing the promise of gene therapy. Although insulator sequences that block transcriptional enhancers could mitigate or eliminate these risks, so far no human insulators with high functional potency have been identified. Here we describe a genomic approach for the identification of compact sequence elements that function as insulators. These elements are highly occupied by the insulator protein CTCF, are DNase I hypersensitive and represent only a small minority of the CTCF recognition sequences in the human genome. We show that the elements identified acted as potent enhancer blockers and substantially decreased the risk of tumor formation in a cancer-prone animal model. The elements are small, can be efficiently accommodated by viral vectors and have no detrimental effects on viral titers. The insulators we describe here are expected to increase the safety of gene therapy for genetic diseases.
PMID: 25580597
ISSN: 1087-0156
CID: 1436052

Systematic localization of common disease-associated variation in regulatory DNA

Maurano, Matthew T; Humbert, Richard; Rynes, Eric; Thurman, Robert E; Haugen, Eric; Wang, Hao; Reynolds, Alex P; Sandstrom, Richard; Qu, Hongzhu; Brody, Jennifer; Shafer, Anthony; Neri, Fidencio; Lee, Kristen; Kutyavin, Tanya; Stehling-Sun, Sandra; Johnson, Audra K; Canfield, Theresa K; Giste, Erika; Diegel, Morgan; Bates, Daniel; Hansen, R Scott; Neph, Shane; Sabo, Peter J; Heimfeld, Shelly; Raubitschek, Antony; Ziegler, Steven; Cotsapas, Chris; Sotoodehnia, Nona; Glass, Ian; Sunyaev, Shamil R; Kaul, Rajinder; Stamatoyannopoulos, John A
Genome-wide association studies have identified many noncoding variants associated with common diseases and traits. We show that these variants are concentrated in regulatory DNA marked by deoxyribonuclease I (DNase I) hypersensitive sites (DHSs). Eighty-eight percent of such DHSs are active during fetal development and are enriched in variants associated with gestational exposure-related phenotypes. We identified distant gene targets for hundreds of variant-containing DHSs that may explain phenotype associations. Disease-associated variants systematically perturb transcription factor recognition sequences, frequently alter allelic chromatin states, and form regulatory networks. We also demonstrated tissue-selective enrichment of more weakly disease-associated variants within DHSs and the de novo identification of pathogenic cell types for Crohn's disease, multiple sclerosis, and an electrocardiogram trait, without prior knowledge of physiological mechanisms. Our results suggest pervasive involvement of regulatory DNA variation in common human disease and provide pathogenic insights into diverse disorders.
PMCID:3771521
PMID: 22955828
ISSN: 0036-8075
CID: 1354152

The accessible chromatin landscape of the human genome

Thurman, Robert E; Rynes, Eric; Humbert, Richard; Vierstra, Jeff; Maurano, Matthew T; Haugen, Eric; Sheffield, Nathan C; Stergachis, Andrew B; Wang, Hao; Vernot, Benjamin; Garg, Kavita; John, Sam; Sandstrom, Richard; Bates, Daniel; Boatman, Lisa; Canfield, Theresa K; Diegel, Morgan; Dunn, Douglas; Ebersol, Abigail K; Frum, Tristan; Giste, Erika; Johnson, Audra K; Johnson, Ericka M; Kutyavin, Tanya; Lajoie, Bryan; Lee, Bum-Kyu; Lee, Kristen; London, Darin; Lotakis, Dimitra; Neph, Shane; Neri, Fidencio; Nguyen, Eric D; Qu, Hongzhu; Reynolds, Alex P; Roach, Vaughn; Safi, Alexias; Sanchez, Minerva E; Sanyal, Amartya; Shafer, Anthony; Simon, Jeremy M; Song, Lingyun; Vong, Shinny; Weaver, Molly; Yan, Yongqi; Zhang, Zhancheng; Zhang, Zhuzhu; Lenhard, Boris; Tewari, Muneesh; Dorschner, Michael O; Hansen, R Scott; Navas, Patrick A; Stamatoyannopoulos, George; Iyer, Vishwanath R; Lieb, Jason D; Sunyaev, Shamil R; Akey, Joshua M; Sabo, Peter J; Kaul, Rajinder; Furey, Terrence S; Dekker, Job; Crawford, Gregory E; Stamatoyannopoulos, John A
DNase I hypersensitive sites (DHSs) are markers of regulatory DNA and have underpinned the discovery of all classes of cis-regulatory elements including enhancers, promoters, insulators, silencers and locus control regions. Here we present the first extensive map of human DHSs identified through genome-wide profiling in 125 diverse cell and tissue types. We identify approximately 2.9 million DHSs that encompass virtually all known experimentally validated cis-regulatory sequences and expose a vast trove of novel elements, most with highly cell-selective regulation. Annotating these elements using ENCODE data reveals novel relationships between chromatin accessibility, transcription, DNA methylation and regulatory factor occupancy patterns. We connect approximately 580,000 distal DHSs with their target promoters, revealing systematic pairing of different classes of distal DHSs and specific promoter types. Patterning of chromatin accessibility at many regulatory regions is organized with dozens to hundreds of co-activated elements, and the transcellular DNase I sensitivity pattern at a given region can predict cell-type-specific functional behaviours. The DHS landscape shows signatures of recent functional evolutionary constraint. However, the DHS compartment in pluripotent and immortalized cells exhibits higher mutation rates than that in highly differentiated cells, exposing an unexpected link between chromatin accessibility, proliferative potential and patterns of human variation.
PMCID:3721348
PMID: 22955617
ISSN: 0028-0836
CID: 1354172

An expansive human regulatory lexicon encoded in transcription factor footprints

Neph, Shane; Vierstra, Jeff; Stergachis, Andrew B; Reynolds, Alex P; Haugen, Eric; Vernot, Benjamin; Thurman, Robert E; John, Sam; Sandstrom, Richard; Johnson, Audra K; Maurano, Matthew T; Humbert, Richard; Rynes, Eric; Wang, Hao; Vong, Shinny; Lee, Kristen; Bates, Daniel; Diegel, Morgan; Roach, Vaughn; Dunn, Douglas; Neri, Jun; Schafer, Anthony; Hansen, R Scott; Kutyavin, Tanya; Giste, Erika; Weaver, Molly; Canfield, Theresa; Sabo, Peter; Zhang, Miaohua; Balasundaram, Gayathri; Byron, Rachel; MacCoss, Michael J; Akey, Joshua M; Bender, M A; Groudine, Mark; Kaul, Rajinder; Stamatoyannopoulos, John A
Regulatory factor binding to genomic DNA protects the underlying sequence from cleavage by DNase I, leaving nucleotide-resolution footprints. Using genomic DNase I footprinting across 41 diverse cell and tissue types, we detected 45 million transcription factor occupancy events within regulatory regions, representing differential binding to 8.4 million distinct short sequence elements. Here we show that this small genomic sequence compartment, roughly twice the size of the exome, encodes an expansive repertoire of conserved recognition sequences for DNA-binding proteins that nearly doubles the size of the human cis-regulatory lexicon. We find that genetic variants affecting allelic chromatin states are concentrated in footprints, and that these elements are preferentially sheltered from DNA methylation. High-resolution DNase I cleavage patterns mirror nucleotide-level evolutionary conservation and track the crystallographic topography of protein-DNA interfaces, indicating that transcription factor structure has been evolutionarily imprinted on the human genome sequence. We identify a stereotyped 50-base-pair footprint that precisely defines the site of transcript origination within thousands of human promoters. Finally, we describe a large collection of novel regulatory factor recognition motifs that are highly conserved in both sequence and function, and exhibit cell-selective occupancy patterns that closely parallel major regulators of development, differentiation and pluripotency.
PMCID:3736582
PMID: 22955618
ISSN: 0028-0836
CID: 1354162

Widespread plasticity in CTCF occupancy linked to DNA methylation

Wang, Hao; Maurano, Matthew T; Qu, Hongzhu; Varley, Katherine E; Gertz, Jason; Pauli, Florencia; Lee, Kristen; Canfield, Theresa; Weaver, Molly; Sandstrom, Richard; Thurman, Robert E; Kaul, Rajinder; Myers, Richard M; Stamatoyannopoulos, John A
CTCF is a ubiquitously expressed regulator of fundamental genomic processes including transcription, intra- and interchromosomal interactions, and chromatin structure. Because of its critical role in genome function, CTCF binding patterns have long been assumed to be largely invariant across different cellular environments. Here we analyze genome-wide occupancy patterns of CTCF by ChIP-seq in 19 diverse human cell types, including normal primary cells and immortal lines. We observed highly reproducible yet surprisingly plastic genomic binding landscapes, indicative of strong cell-selective regulation of CTCF occupancy. Comparison with massively parallel bisulfite sequencing data indicates that 41% of variable CTCF binding is linked to differential DNA methylation, concentrated at two critical positions within the CTCF recognition sequence. Unexpectedly, CTCF binding patterns were markedly different in normal versus immortal cells, with the latter showing widespread disruption of CTCF binding associated with increased methylation. Strikingly, this disruption is accompanied by up-regulation of CTCF expression, with the result that both normal and immortal cells maintain the same average number of CTCF occupancy sites genome-wide. These results reveal a tight linkage between DNA methylation and the global occupancy patterns of a major sequence-specific regulatory factor.
PMCID:3431485
PMID: 22955980
ISSN: 1088-9051
CID: 1354192

BEDOPS: high-performance genomic feature operations

Neph, Shane; Kuehn, M Scott; Reynolds, Alex P; Haugen, Eric; Thurman, Robert E; Johnson, Audra K; Rynes, Eric; Maurano, Matthew T; Vierstra, Jeff; Thomas, Sean; Sandstrom, Richard; Humbert, Richard; Stamatoyannopoulos, John A
The large and growing number of genome-wide datasets highlights the need for high-performance feature analysis and data comparison methods, in addition to efficient data storage and retrieval techniques. We introduce BEDOPS, a software suite for common genomic analysis tasks which offers improved flexibility, scalability and execution time characteristics over previously published packages. The suite includes a utility to compress large inputs into a lossless format that can provide greater space savings and faster data extractions than alternatives. AVAILABILITY: http://code.google.com/p/bedops/ includes binaries, source and documentation.
PMCID:3389768
PMID: 22576172
ISSN: 1367-4803
CID: 1354202

Widespread site-dependent buffering of human regulatory polymorphism

Maurano, Matthew T; Wang, Hao; Kutyavin, Tanya; Stamatoyannopoulos, John A
The average individual is expected to harbor thousands of variants within non-coding genomic regions involved in gene regulation. However, it is currently not possible to interpret reliably the functional consequences of genetic variation within any given transcription factor recognition sequence. To address this, we comprehensively analyzed heritable genome-wide binding patterns of a major sequence-specific regulator (CTCF) in relation to genetic variability in binding site sequences across a multi-generational pedigree. We localized and quantified CTCF occupancy by ChIP-seq in 12 related and unrelated individuals spanning three generations, followed by comprehensive targeted resequencing of the entire CTCF-binding landscape across all individuals. We identified hundreds of variants with reproducible quantitative effects on CTCF occupancy (both positive and negative). While these effects paralleled protein-DNA recognition energetics when averaged, they were extensively buffered by striking local context dependencies. In the significant majority of cases buffering was complete, resulting in silent variants spanning every position within the DNA recognition interface irrespective of level of binding energy or evolutionary constraint. The prevalence of complex partial or complete buffering effects severely constrained the ability to predict reliably the impact of variation within any given binding site instance. Surprisingly, 40% of variants that increased CTCF occupancy occurred at positions of human-chimp divergence, challenging the expectation that the vast majority of functional regulatory variants should be deleterious. Our results suggest that, even in the presence of "perfect" genetic information afforded by resequencing and parallel studies in multiple related individuals, genomic site-specific prediction of the consequences of individual variation in regulatory DNA will require systematic coupling with empirical functional genomic measurements.
PMCID:3310774
PMID: 22457641
ISSN: 1553-7390
CID: 1354212