Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:moonst01

Total Results:

84


Acrolein induced DNA damage, mutagenicity and effect on DNA repair

Tang, Moon-Shong; Wang, Hsiang-Tsui; Hu, Yu; Chen, Wei-Sheng; Akao, Makoto; Feng, Zhaohui; Hu, Wenwei
Acrolein (Acr) is a ubiquitous environmental contaminant; it also can be generated endogenously by lipid peroxidation. Acr contains a carbonyl group and an olefinic double bond; it can react with many cellular molecules including amino acids, proteins and nucleic acids. In this review article we focus on updating information regarding: (i) Acr-induced DNA damage and methods of detection, (ii) repair of Acr-DNA damage, (iii) mutagenicity of Acr-DNA adducts, (iv) sequence specificity and methylation effect on Acr-DNA adduct formation and (v) the role of Acr in human cancer. We have found that Acr can inhibit DNA repair and induces mutagenic Acr-dG adducts and that the binding spectrum of Acr in the p53 gene in normal human bronchial epithelial cells is similar to the p53 mutational spectrum in lung cancer. Since Acr-DNA adduct has been identified in human lung tissue and Acr causes bladder cancer in human and rat models, we conclude that Acr is a major lung and bladder carcinogen, and its carcinogenicity arises via induction of DNA damage and inhibition of DNA repair
PMCID:4606864
PMID: 21714128
ISSN: 1613-4133
CID: 137067

Chromium induces chromosomal instability, which is partly due to deregulation of BubR1 and Emi1, two APC/C inhibitors

Hu, Liyan; Liu, Xin; Chervona, Yana; Yang, Feikun; Tang, Moon-Shong; Darzynkiewicz, Zbigniew; Dai, Wei
Disruption of cell cycle checkpoints and interference with the normal cell cycle progression frequently result in cell death or malignant transformation. Hexavalent chromium [Cr(VI)] is a well-known carcinogen that has been implicated in the occurrence of many types of human malignancies, including lung cancer. However, the exact mechanism by which Cr(VI) causes malignant transformation in the lung remains unknown. We have demonstrated that chronic exposure to a non-cytotoxic concentration of Cr(VI) induced a variety of chromosomal abnormalities, including premature sister chromatid separation, chromosomal breakage and the presence of lagging/misaligned chromosomes. After treatment with nocodazole, both HeLa and normal lung bronchial epithelial cells were arrested at mitosis. However, Cr(VI) significantly compromised M-phase arrest induced by nocodazole. Cr(VI) suppressed BubR1 activation and reduced expression of Emi1, leading to an unscheduled activation of APC/C. Consistent with this observation, Cr(VI) treatment caused enhanced polyubiquitination of geminin during mitotic release, while it deregulated the activity of Cdt1, a DNA replication licensing factor. Combined, these results suggest that Cr(VI)-induced chromosomal instability is partly due to a perturbation of APC/C activities, leading to chromosomal instability
PMCID:3230526
PMID: 21670593
ISSN: 1551-4005
CID: 135558

Downregulation of miR-205 and miR-31 confers resistance to chemotherapy-induced apoptosis in prostate cancer cells

Bhatnagar, N; Li, X; Padi, S K R; Zhang, Q; Tang, M-S; Guo, B
Advanced prostate cancers are known to acquire not only invasive capabilities but also significant resistance to chemotherapy-induced apoptosis. To understand how microRNAs (miRNAs) may contribute to prostate cancer resistance to apoptosis, we compared microRNA expression profiles of a benign prostate cancer cell line WPE1-NA22 and a highly malignant WPE1-NB26 cell line (derived from a common lineage). We found that miR-205 and miR-31 are significantly downregulated in WPE1-NB26 cells, as well as in other cell lines representing advanced-stage prostate cancers. Antiapoptotic genes BCL2L2 (encoding Bcl-w) and E2F6 are identified as the targets of miR-205 and miR-31, respectively. By downregulating Bcl-w and E2F6, miR-205 and miR-31 promote chemotherapeutic agents-induced apoptosis in prostate cancer cells. The promoter region of the miR-205 gene was cloned and was found to be hypermethylated in cell lines derived from advanced prostate cancers, contributing to the downregulation of the gene. Treatment with DNA methylation inhibitor 5-aza-2'-deoxycytidine induced miR-205 expression, downregulated Bcl-w, and sensitized prostate cancer cells to chemotherapy-induced apoptosis. Thus, downregulation of miR-205 and miR-31 has an important role in apoptosis resistance in advanced prostate cancer
PMCID:3004480
PMID: 21368878
ISSN: 2041-4889
CID: 135623

Repair of mitomycin C mono- and interstrand cross-linked DNA adducts by UvrABC: a new model

Weng, Mao-Wen; Zheng, Yi; Jasti, Vijay P; Champeil, Elise; Tomasz, Maria; Wang, Yinsheng; Basu, Ashis K; Tang, Moon-Shong
Mitomycin C induces both MC-mono-dG and cross-linked dG-adducts in vivo. Interstrand cross-linked (ICL) dG-MC-dG-DNA adducts can prevent strand separation. In Escherichia coli cells, UvrABC repairs ICL lesions that cause DNA bending. The mechanisms and consequences of NER of ICL dG-MC-dG lesions that do not induce DNA bending remain unclear. Using DNA fragments containing a MC-mono-dG or an ICL dG-MC-dG adduct, we found (i) UvrABC incises only at the strand containing MC-mono-dG adducts; (ii) UvrABC makes three types of incisions on an ICL dG-MC-dG adduct: type 1, a single 5' incision on 1 strand and a 3' incision on the other; type 2, dual incisions on 1 strand and a single incision on the other; and type 3, dual incisions on both strands; and (iii) the cutting kinetics of type 3 is significantly faster than type 1 and type 2, and all of 3 types of cutting result in producing DSB. We found that UvrA, UvrA + UvrB and UvrA + UvrB + UvrC bind to MC-modified DNA specifically, and we did not detect any UvrB- and UvrB + UvrC-DNA complexes. Our findings challenge the current UvrABC incision model. We propose that DSBs resulted from NER of ICL dG-MC-dG adducts contribute to MC antitumor activity and mutations
PMCID:2978355
PMID: 20647419
ISSN: 1362-4962
CID: 114506

Ultraviolet A light: potential underlying causes of melanoma

Tang, Moon-Shong
PMID: 21062150
ISSN: 1744-8301
CID: 114194

Melanocytes are deficient in repair of oxidative DNA damage and UV-induced photoproducts

Wang, Hsiang-Tsui; Choi, Bongkun; Tang, Moon-shong
Melanomas occur mainly in sunlight-exposed skin. Xeroderma pigmentosum (XP) patients have 1,000-fold higher incidence of melanoma, suggesting that sunlight-induced 'bulky' photoproducts are responsible for melanomagenesis. Sunlight induces a high level of reactive oxygen species in melanocytes (MCs); oxidative DNA damage (ODD) may thus also contribute to melanomagenesis, and XP gene products may participate in the repair of ODD. We examined the effects of melanin on UVA (320-400 nm) irradiation-induced ODD and UV photoproducts and the repair capacity in MC and XP cells for ODD and UV-induced photoproducts. Our findings indicate that UVA irradiation induces a significantly higher amount of formamidopyrimidine glycosylase-sensitive ODD in MCs than in normal human skin fibroblasts (NHSFs). In contrast, UVA irradiation induces an insignificant amount of UvrABC-sensitive sites in either of these two types of cells. We also found that, compared to NHSFs, MCs have a reduced repair capacity for ODD and photoproducts; H(2)O(2) modified- and UVC-irradiated DNAs induce a higher mutation frequency in MCs than in NHSFs; and, XP complementation group A (XPA), XP complementation group C, and XP complementation group G cells are deficient in ODD repair and ODD induces a higher mutation frequency in XPA cells than in NHSFs. These results suggest that: (i) melanin sensitizes UVA in the induction of ODD but not bulky UV photoproducts; (ii) the high susceptibility to UVA-induced ODD and the reduced DNA repair capacity in MCs contribute to carcinogenesis; and (iii) the reduced repair capacity for ODD contributes to the high melanoma incidence in XP patients
PMCID:2901481
PMID: 20566850
ISSN: 1091-6490
CID: 110876

DNA wrapping is required for DNA damage recognition in the Escherichia coli DNA nucleotide excision repair pathway

Wang, Hailin; Lu, Meiling; Tang, Moon-shong; Van Houten, Bennett; Ross, J B Alexander; Weinfeld, Michael; Le, X Chris
Localized DNA melting may provide a general strategy for recognition of the wide array of chemically and structurally diverse DNA lesions repaired by the nucleotide excision repair (NER) pathway. However, it is not clear what causes such DNA melting and how it is driven. Here, we show a DNA wrapping-melting model supported by results from dynamic monitoring of the key DNA-protein and protein-protein interactions involved in the early stages of the Escherichia coli NER process. Using an analytical technique involving capillary electrophoresis coupled with laser-induced fluorescence polarization, which combines a mobility shift assay with conformational analysis, we demonstrate that DNA wrapping around UvrB, mediated by UvrA, is an early event in the damage-recognition process during E. coli NER. DNA wrapping of UvrB was confirmed by Forster resonance energy transfer and fluorescence lifetime measurements. This wrapping did not occur with readily denaturable damaged DNA substrates ('bubble' DNA), suggesting that DNA wrapping of UvrB plays an important role in the induction of DNA melting around the damage site. Analysis of DNA wrapping of mutant UvrB Y96A further suggests that a cooperative interaction between DNA wrapping of UvrA(2)B and contact of the beta-hairpin of UvrB with the bulky damage moiety may be involved in the local DNA melting at the damage site
PMCID:2700148
PMID: 19549864
ISSN: 1091-6490
CID: 133700

Mutagenicity and Sequence Specificity of Acrolein-DNA Adducts

Wang, Hsiang-Tsui; Zhang, Siyi; Hu, Yu; Tang, Moon-Shong
Acrolein (Acr) is a major toxicant in cigarette smoke (CS); it can interact with DNA forming two major adduct isomers: alpha-OH-Acr-dG and gamma-OH-Acr-dG. Previously, we found that the Acr-DNA binding pattern in the human p53 gene coincides with the p53 mutational pattern in CS-related lung cancer; hence, we proposed that Acr is a major lung cancer etiological agent [ Feng , Z. , Hu , W. , Hu , Y. , and Tang , M.-s. ( 2006 ) Acrolein is a major cigarette-related lung cancer agent: Preferential binding at p53 mutational hotspots and inhibition of DNA repair . Proc. Natl. Acad. Sci. U.S.A. 103 , 15404 - 15409 ]. This hypothesis has been brought into question with recent work that failed to detect Acr-induced mutations in the pSP189 system [ Kim , S. I. , Pfeifer , G. P. , and Besaratinia , A. ( 2007 ) Lack of mutagenicity of acrolein-induced DNA adducts in mouse and human cells . Cancer Res. 67 , 11640 - 116472 ]. To resolve this controversy, we determined the level and the type of Acr-dG formation, and the mutagenicity of Acr-dG adducts in the same pSP189 system. We also mapped the Acr-dG adduct distribution at the nucleotide level and the Acr-dG-induced mutational spectrum in this system. We found that (1) gamma-OH-Acr-dG is the major adduct formed in Acr-modified DNA based on the LC-ESI-MS/MS analysis; (2) the mutation frequency is proportional to the extent of Acr modifications, the majority of which are G:C to T:A and G:C to A:T mutations; and (3) sequences with a run of Gs are the mutational hotspots. Using the UvrABC nuclease incision method to map the Acr-dG distribution in the supF gene sequence, we confirmed that Acr-DNA adducts preferentially form in guanine-rich sequences that are also mutational hotspots. These results reaffirm that Acr-dG adducts are mutagenic and support our hypothesis that Acr is a major etiological agent for CS and cooking fume-related lung cancer
PMCID:4606861
PMID: 19146376
ISSN: 1520-5010
CID: 98293

Using high throughput resequencing microarrays to detect mutations in genes involved in lung cancer [Meeting Abstract]

Piao, LC; Gunnison, A; Nadas, A; Chen, WC; Nonaka, D; Spivack, S; Pass, H; Rom, WN; Tang, MS
ISI:000260403300066
ISSN: 1574-0153
CID: 91475

Particulate matter inhibits DNA repair and enhances mutagenesis

Mehta, Manju; Chen, Lung-Chi; Gordon, Terry; Rom, William; Tang, Moon-Shong
Exposure to ambient air pollution has been associated with adverse health effects including lung cancer. A recent epidemiology study has established that each 10mug/m(3) elevation in long-term exposure to average PM(2.5) ambient concentration was associated with approximately 8% of lung cancer mortality. The underlying mechanisms of how PM contributes to lung carcinogenesis, however, remain to be elucidated. We have recently found that transition metals such as nickel and chromium and oxidative stress induced lipid peroxidation metabolites such as aldehydes can greatly inhibit nucleotide excision repair (NER) and enhance carcinogen-induced mutations. Because PM is rich in metal and aldehyde content and can induce oxidative stress, we tested the effect of PM on DNA repair capacity in cultured human lung cells using in vitro DNA repair synthesis and host cell reactivation assays. We found that PM greatly inhibits NER for ultraviolet (UV) light and benzo(a)pyrene diol epoxide (BPDE) induced DNA damage in human lung cells. We further demonstrated that PM exposure can significantly increase both spontaneous and UV-induced mutagenesis. These results together suggest that the carcinogenicity of PM may act through its combined effect on suppression of DNA repair and enhancement of DNA replication errors
PMCID:4002174
PMID: 18804180
ISSN: 0027-5107
CID: 90028