Searched for: in-biosketch:yes
person:mullim04
Immunogenicity of NVX-CoV2373 heterologous boost against SARS-CoV-2 variants
Lyke, Kirsten E; Atmar, Robert L; Dominguez Islas, Clara; Posavad, Christine M; Deming, Meagan E; Branche, Angela R; Johnston, Christine; El Sahly, Hana M; Edupuganti, Srilatha; Mulligan, Mark J; Jackson, Lisa A; Rupp, Richard E; Rostad, Christina A; Coler, Rhea N; Bäcker, Martín; Kottkamp, Angelica C; Babu, Tara M; Dobrzynski, David; Martin, Judith M; Brady, Rebecca C; Frenck, Robert W; Rajakumar, Kumaravel; Kotloff, Karen; Rouphael, Nadine; Szydlo, Daniel; PaulChoudhury, Rahul; Archer, Janet I; Crandon, Sonja; Ingersoll, Brian; Eaton, Amanda; Brown, Elizabeth R; McElrath, M Juliana; Neuzil, Kathleen M; Stephens, David S; Post, Diane J; Lin, Bob C; Serebryannyy, Leonid; Beigel, John H; Montefiori, David C; Roberts, Paul C
As part of a multicenter study evaluating homologous and heterologous COVID-19 booster vaccines, we assessed the magnitude, breadth, and short-term durability of binding and pseudovirus-neutralizing antibody (PsVNA) responses following a single booster dose of NVX-CoV2373 in adults primed with either Ad26.COV2.S, mRNA-1273, or BNT162b2 vaccines. NVX-CoV2373 as a heterologous booster was immunogenic and associated with no safety concerns through Day 91. Fold-rises in PsVNA titers from baseline (Day 1) to Day 29 were highest for prototypic D614G variant and lowest for more recent Omicron sub-lineages BQ.1.1 and XBB.1. Peak humoral responses against all SARS-CoV-2 variants were lower in those primed with Ad26.COV2.S than with mRNA vaccines. Prior SARS CoV-2 infection was associated with substantially higher baseline PsVNA titers, which remained elevated relative to previously uninfected participants through Day 91. These data support the use of heterologous protein-based booster vaccines as an acceptable alternative to mRNA or adenoviral-based COVID-19 booster vaccines. This trial was conducted under ClinicalTrials.gov: NCT04889209.
PMCID:10336079
PMID: 37433788
ISSN: 2059-0105
CID: 5537552
Optimized quantification of intra-host viral diversity in SARS-CoV-2 and influenza virus sequence data
Roder, A E; Johnson, K E E; Knoll, M; Khalfan, M; Wang, B; Schultz-Cherry, S; Banakis, S; Kreitman, A; Mederos, C; Youn, J-H; Mercado, R; Wang, W; Chung, M; Ruchnewitz, D; Samanovic, M I; Mulligan, M J; Lässig, M; Luksza, M; Das, S; Gresham, D; Ghedin, E
High error rates of viral RNA-dependent RNA polymerases lead to diverse intra-host viral populations during infection. Errors made during replication that are not strongly deleterious to the virus can lead to the generation of minority variants. However, accurate detection of minority variants in viral sequence data is complicated by errors introduced during sample preparation and data analysis. We used synthetic RNA controls and simulated data to test seven variant-calling tools across a range of allele frequencies and simulated coverages. We show that choice of variant caller and use of replicate sequencing have the most significant impact on single-nucleotide variant (SNV) discovery and demonstrate how both allele frequency and coverage thresholds impact both false discovery and false-negative rates. When replicates are not available, using a combination of multiple callers with more stringent cutoffs is recommended. We use these parameters to find minority variants in sequencing data from SARS-CoV-2 clinical specimens and provide guidance for studies of intra-host viral diversity using either single replicate data or data from technical replicates. Our study provides a framework for rigorous assessment of technical factors that impact SNV identification in viral samples and establishes heuristics that will inform and improve future studies of intra-host variation, viral diversity, and viral evolution. IMPORTANCE When viruses replicate inside a host cell, the virus replication machinery makes mistakes. Over time, these mistakes create mutations that result in a diverse population of viruses inside the host. Mutations that are neither lethal to the virus nor strongly beneficial can lead to minority variants that are minor members of the virus population. However, preparing samples for sequencing can also introduce errors that resemble minority variants, resulting in the inclusion of false-positive data if not filtered correctly. In this study, we aimed to determine the best methods for identification and quantification of these minority variants by testing the performance of seven commonly used variant-calling tools. We used simulated and synthetic data to test their performance against a true set of variants and then used these studies to inform variant identification in data from SARS-CoV-2 clinical specimens. Together, analyses of our data provide extensive guidance for future studies of viral diversity and evolution.
PMID: 37389439
ISSN: 2150-7511
CID: 5540582
Molecularly distinct memory CD4+ T cells are induced by SARS-CoV-2 infection and mRNA vaccination
Gray-Gaillard, Sophie L; Solis, Sabrina; Monteiro, Clarice; Chen, Han M; Ciabattoni, Grace; Samanovic, Marie I; Cornelius, Amber R; Williams, Tijaana; Geesey, Emilie; Rodriguez, Miguel; Ortigoza, Mila Brum; Ivanova, Ellie N; Koralov, Sergei B; Mulligan, Mark J; Herati, Ramin Sedaghat
UNLABELLED:Adaptive immune responses are induced by vaccination and infection, yet little is known about how CD4+ T cell memory differs between these two contexts. Notable differences in humoral and cellular immune responses to primary mRNA vaccination were observed and associated with prior COVID-19 history, including in the establishment and recall of Spike-specific CD4+ T cells. It was unclear whether CD4+ T cell memory established by infection or mRNA vaccination as the first exposure to Spike was qualitatively similar. To assess whether the mechanism of initial memory T cell priming affected subsequent responses to Spike protein, 14 people who were receiving a third mRNA vaccination, referenced here as the booster, were stratified based on whether the first exposure to Spike protein was by viral infection or immunization (infection-primed or vaccine-primed). Using multimodal scRNA-seq of activation-induced marker (AIM)-reactive Spike-specific CD4+ T cells, we identified 220 differentially expressed genes between infection- and vaccine-primed patients at the post-booster time point. Infection-primed participants had greater expression of genes related to cytotoxicity and interferon signaling. Gene set enrichment analysis (GSEA) revealed enrichment for Interferon Alpha, Interferon Gamma, and Inflammatory response gene sets in Spike-specific CD4+ T cells from infection-primed individuals, whereas Spike-specific CD4+ T cells from vaccine-primed individuals had strong enrichment for proliferative pathways by GSEA. Finally, SARS-CoV-2 breakthrough infection in vaccine-primed participants resulted in subtle changes in the transcriptional landscape of Spike-specific memory CD4+ T cells relative to pre-breakthrough samples but did not recapitulate the transcriptional profile of infection-primed Spike-specific CD4+ T cells. Together, these data suggest that CD4+ T cell memory is durably imprinted by the inflammatory context of SARS-CoV-2 infection, which has implications for personalization of vaccination based on prior infection history. ONE SENTENCE SUMMARY/UNASSIGNED:SARS-CoV-2 infection and mRNA vaccination prime transcriptionally distinct CD4+ T cell memory landscapes which are sustained with subsequent doses of vaccine.
PMCID:9681040
PMID: 36415470
ISSN: 2692-8205
CID: 5390872
Efficacy and safety of azithromycin versus placebo to treat lower respiratory tract infections associated with low procalcitonin: a randomised, placebo-controlled, double-blind, non-inferiority trial
Tsalik, Ephraim L; Rouphael, Nadine G; Sadikot, Ruxana T; Rodriguez-Barradas, Maria C; McClain, Micah T; Wilkins, Dana M; Woods, Christopher W; Swamy, Geeta K; Walter, Emmanuel B; El Sahly, Hana M; Keitel, Wendy A; Mulligan, Mark J; Tuyishimire, Bonifride; Serti, Elisavet; Hamasaki, Toshimitsu; Evans, Scott R; Ghazaryan, Varduhi; Lee, Marina S; Lautenbach, Ebbing
BACKGROUND:Lower respiratory tract infections are frequently treated with antibiotics, despite a viral cause in many cases. It remains unknown whether low procalcitonin concentrations can identify patients with lower respiratory tract infection who are unlikely to benefit from antibiotics. We aimed to compare the efficacy and safety of azithromycin versus placebo to treat lower respiratory tract infections in patients with low procalcitonin. METHODS:We conducted a randomised, placebo-controlled, double-blind, non-inferiority trial at five health centres in the USA. Adults aged 18 years or older with clinically suspected non-pneumonia lower respiratory tract infection and symptom duration from 24 h to 28 days were eligible for enrolment. Participants with a procalcitonin concentration of 0·25 ng/mL or less were randomly assigned (1:1), in blocks of four with stratification by site, to receive over-encapsulated oral azithromycin 250 mg or matching placebo (two capsules on day 1 followed by one capsule daily for 4 days). Participants, non-study clinical providers, investigators, and study coordinators were masked to treatment allocation. The primary outcome was efficacy of azithromycin versus placebo in terms of clinical improvement at day 5 in the intention-to-treat population. The non-inferiority margin was -12·5%. Solicited adverse events (abdominal pain, vomiting, diarrhoea, allergic reaction, or yeast infections) were recorded as a secondary outcome. This trial is registered with ClinicalTrials.gov, NCT03341273. FINDINGS/RESULTS:Between Dec 8, 2017, and March 9, 2020, 691 patients were assessed for eligibility and 499 were enrolled and randomly assigned to receive azithromycin (n=249) or placebo (n=250). Clinical improvement at day 5 was observed in 148 (63%, 95% CI 54 to 71) of 238 participants with full data in the placebo group and 155 (69%, 61 to 77) of 227 participants with full data in the azithromycin group in the intention-to-treat analysis (between-group difference -6%, 95% CI -15 to 2). The 95% CI for the difference did not meet the non-inferiority margin. Solicited adverse events and the severity of solicited adverse events were not significantly different between groups at day 5, except for increased abdominal pain associated with azithromycin (47 [23%, 95% CI 18 to 29] of 204 participants) compared with placebo (35 [16%, 12 to 21] of 221; between-group difference -7% [95% CI -15 to 0]; p=0·066). INTERPRETATION/CONCLUSIONS:Placebo was not non-inferior to azithromycin in terms of clinical improvement at day 5 in adults with lower respiratory tract infection and a low procalcitonin concentration. After accounting for both the rates of clinical improvement and solicited adverse events at day 5, it is unclear whether antibiotics are indicated for patients with lower respiratory tract infection and a low procalcitonin concentration. FUNDING/BACKGROUND:National Institute of Allergy and Infectious Diseases, bioMérieux.
PMID: 36525985
ISSN: 1474-4457
CID: 5382572
Cellular and humoral immunity to Ebola Zaire glycoprotein and viral vector proteins following immunization with recombinant vesicular stomatitis virus-based Ebola vaccine (rVSVΔG-ZEBOV-GP)
Raabe, Vanessa; Lai, Lilin; Morales, Juliet; Xu, Yongxian; Rouphael, Nadine; Davey, Richard T; Mulligan, Mark J
While effective at preventing Zaire ebolavirus (ZEBOV) disease, cellular immunity to ZEBOV and vector-directed immunity elicited by the recombinant vesicular stomatitis virus expressing ZEBOV glycoprotein (rVSVΔG-ZEBOV-GP) vaccine remain poorly understood. Sera and peripheral blood mononuclear cells were collected from 32 participants enrolled in a prospective multicenter study [ClinicalTrials.gov NCT02788227] before vaccination and up to six months post-vaccination. IgM and IgG antibodies, IgG-producing memory B cells (MBCs), and T cell reactivity to ZEBOV glycoprotein (ZEBOV-GP), vesicular stomatitis virus-Indiana strain (VSV-I) matrix (M) protein, and VSV-I nucleoprotein (NP) were measured using ELISA, ELISpot, and flow cytometry, respectively. 11/32 (34.4%) participants previously received a different investigational ZEBOV vaccine prior to enrollment and 21/32 (65.6%) participants were ZEBOV vaccine naïve. Both ZEBOV vaccine naïve and experienced participants had increased ZEBOV-GP IgG optical densities (ODs) post-rVSVΔG-ZEBOV-GP vaccination while only ZEBOV vaccine naïve participants had increased ZEBOV-GP IgM ODs. Transient IgM and IgG antibody responses to VSV-I M protein and NP were observed in a minority of participants. All participants had detectable ZEBOV-GP specific IgG-producing MBCs by 6 months post-vaccination while no changes were observed in the median IgG-producing MBCs to VSV-I proteins. T cell responses to ZEBOV-GP differed between ZEBOV vaccine experienced and ZEBOV vaccine naïve participants. T cell responses to both VSV-I M protein and VSV-I NP were observed, but were of a low magnitude. The rVSVΔG-ZEBOV-GP vaccine elicits robust humoral and memory B cell responses to ZEBOV glycoprotein in both ZEBOV vaccine naïve and experienced individuals and can generate vector-directed T cell immunity. Further research is needed to understand the significance of pre-existing vector and target antigen immunity on responses to booster doses of rVSVΔG-ZEBOV-GP and other rVSV-vectored vaccines.
PMCID:10021073
PMID: 36725433
ISSN: 1873-2518
CID: 5468352
Multimodal characterization of antigen-specific CD8 + T cells across SARS-CoV-2 vaccination and infection
Zhang, Bingjie; Upadhyay, Rabi; Hao, Yuhan; Samanovic, Marie I; Herati, Ramin S; Blair, John; Axelrad, Jordan; Mulligan, Mark J; Littman, Dan R; Satija, Rahul
The human immune response to SARS-CoV-2 antigen after infection or vaccination is defined by the durable production of antibodies and T cells. Population-based monitoring typically focuses on antibody titer, but there is a need for improved characterization and quantification of T cell responses. Here, we utilize multimodal sequencing technologies to perform a longitudinal analysis of circulating human leukocytes collected before and after BNT162b2 immunization. Our data reveal distinct subpopulations of CD8 + T cells which reliably appear 28 days after prime vaccination (7 days post boost). Using a suite of cross-modality integration tools, we define their transcriptome, accessible chromatin landscape, and immunophenotype, and identify unique biomarkers within each modality. By leveraging DNA-oligo-tagged peptide-MHC multimers and T cell receptor sequencing, we demonstrate that this vaccine-induced population is SARS-CoV-2 antigen-specific and capable of rapid clonal expansion. Moreover, we also identify these CD8 + populations in scRNA-seq datasets from COVID-19 patients and find that their relative frequency and differentiation outcomes are predictive of subsequent clinical outcomes. Our work contributes to our understanding of T cell immunity, and highlights the potential for integrative and multimodal analysis to characterize rare cell populations.
PMCID:9900816
PMID: 36747786
ISSN: 2692-8205
CID: 5522692
Identification of immunodominant T cell epitopes induced by natural Zika virus infection
Eickhoff, Christopher S; Meza, Krystal A; Terry, Frances E; Colbert, Chase G; Blazevic, Azra; Gutiérrez, Andres H; Stone, E Taylor; Brien, James D; Pinto, Amelia K; El Sahly, Hana M; Mulligan, Mark J; Rouphael, Nadine; Alcaide, Maria L; Tomashek, Kay M; Focht, Chris; Martin, William D; Moise, Leonard; De Groot, Anne S; Hoft, Daniel F
Zika virus (ZIKV) is a flavivirus primarily transmitted by Aedes species mosquitoes, first discovered in Africa in 1947, that disseminated through Southeast Asia and the Pacific Islands in the 2000s. The first ZIKV infections in the Americas were identified in 2014, and infections exploded through populations in Brazil and other countries in 2015/16. ZIKV infection during pregnancy can cause severe brain and eye defects in offspring, and infection in adults has been associated with higher risks of Guillain-Barré syndrome. We initiated a study to describe the natural history of Zika (the disease) and the immune response to infection, for which some results have been reported. In this paper, we identify ZIKV-specific CD4+ and CD8+ T cell epitopes that induce responses during infection. Two screening approaches were utilized: an untargeted approach with overlapping peptide arrays spanning the entire viral genome, and a targeted approach utilizing peptides predicted to bind human MHC molecules. Immunoinformatic tools were used to identify conserved MHC class I supertype binders and promiscuous class II binding peptide clusters predicted to bind 9 common class II alleles. T cell responses were evaluated in overnight IFN-γ ELISPOT assays. We found that MHC supertype binding predictions outperformed the bulk overlapping peptide approach. Diverse CD4+ T cell responses were observed in most ZIKV-infected participants, while responses to CD8+ T cell epitopes were more limited. Most individuals developed a robust T cell response against epitopes restricted to a single MHC class I supertype and only a single or few CD8+ T cell epitopes overall, suggesting a strong immunodominance phenomenon. Noteworthy is that many epitopes were commonly immunodominant across persons expressing the same class I supertype. Nearly all of the identified epitopes are unique to ZIKV and are not present in Dengue viruses. Collectively, we identified 31 immunogenic peptides restricted by the 6 major class I supertypes and 27 promiscuous class II epitopes. These sequences are highly relevant for design of T cell-targeted ZIKV vaccines and monitoring T cell responses to Zika virus infection and vaccination.
PMCID:10497216
PMID: 37705976
ISSN: 1664-3224
CID: 5593732
Low incidence and transient elevation of autoantibodies post mRNA COVID-19 vaccination in inflammatory arthritis
Blank, Rebecca B; Haberman, Rebecca H; Qian, Kun; Samanovic, Marie; Castillo, Rochelle; Jimenez Hernandez, Anthony; Vasudevapillai Girija, Parvathy; Catron, Sydney; Uddin, Zakwan; Rackoff, Paula; Solomon, Gary; Azar, Natalie; Rosenthal, Pamela; Izmirly, Peter; Samuels, Jonathan; Golden, Brian; Reddy, Soumya; Mulligan, Mark J; Hu, Jiyuan; Scher, Jose U
OBJECTIVES/OBJECTIVE:Autoantibody seroconversion has been extensively studied in the context of COVID-19 infection but data regarding post-vaccination autoantibody production is lacking. Here we aimed to determine the incidence of common autoantibody formation following mRNA COVID-19 vaccines in patients with inflammatory arthritis (IA) and in healthy controls. METHODS:Autoantibody seroconversion was measured by serum ELISA in a longitudinal cohort of IA participants and healthy controls before and after COVID-19 mRNA-based immunization. RESULTS:Overall, there was a significantly lower incidence of ANA seroconversion in participants who did not contract COVID-19 prior to vaccination compared with those who been previously infected (7.4% vs 24.1%, p= 0.014). Incidence of de novo anti-cyclic citrullinated protein (CCP) seroconversion in all participants was low at 4.9%. Autoantibody levels were typically of low titer, transient, and not associated with increase in IA flares. CONCLUSIONS:In both health and inflammatory arthritis, the risk of autoantibody seroconversion is lower following mRNA-based immunization than following natural SARS-CoV-2 infection. Importantly, seroconversion does not correlate with self-reported IA disease flare risk, further supporting the encouragement of mRNA-based COVID-19 immunization in the IA population.
PMID: 35640110
ISSN: 1462-0332
CID: 5235902
Vaccine-Acquired SARS-CoV-2 Immunity versus Infection-Acquired Immunity: A Comparison of Three COVID-19 Vaccines
Samanovic, Marie I; Oom, Aaron L; Cornelius, Amber R; Gray-Gaillard, Sophie L; Karmacharya, Trishala; Tuen, Michael; Wilson, Jimmy P; Tasissa, Meron F; Goins, Shelby; Herati, Ramin Sedaghat; Mulligan, Mark J
Around the world, rollout of COVID-19 vaccines has been used as a strategy to end COVID-19-related restrictions and the pandemic. Several COVID-19 vaccine platforms have successfully protected against severe SARS-CoV-2 infection and subsequent deaths. Here, we compared humoral and cellular immunity in response to either infection or vaccination. We examined SARS-CoV-2 spike-specific immune responses from Pfizer/BioNTech BNT162b2, Moderna mRNA-1273, Janssen Ad26.COV2.S, and SARS-CoV-2 infection approximately 4 months post-exposure or vaccination. We found that these three vaccines all generate relatively similar immune responses and elicit a stronger response than natural infection. However, antibody responses to recent viral variants are diminished across all groups. The similarity of immune responses from the three vaccines studied here is an important finding in maximizing global protection as vaccination campaigns continue.
PMCID:9782527
PMID: 36560562
ISSN: 2076-393x
CID: 5522682
Dose-Response of a Norovirus GII.2 Controlled Human Challenge Model Inoculum
Rouphael, Nadine; Beck, Allison; Kirby, Amy E; Liu, Pengbo; Natrajan, Muktha S; Lai, Lilin; Phadke, Varun; Winston, Juton; Raabe, Vanessa; Collins, Matthew H; Girmay, Tigisty; Alvarez, Alicarmen; Beydoun, Nour; Karmali, Vinit; Altieri-Rivera, Joanne; Lindesmith, Lisa C; Anderson, Evan J; Wang, Yuke; El-Khorazaty, Jill; Petrie, Carey; Baric, Ralph S; Baqar, Shahida; Moe, Christine L; Mulligan, Mark J
BACKGROUND:Genogroup II noroviruses are the most common cause of acute infectious gastroenteritis. We evaluated the use of a new GII.2 inoculum in a human challenge. METHODS:Forty-four healthy adults (36 secretor-positive and 8 secretor-negative for histo-blood group antigens) were challenged with ascending doses of a new safety-tested Snow Mountain Virus (SMV) GII.2 norovirus inoculum (1.2x10 4 to 1.2x10 7 genomic equivalent copies [GEC]; n=38) or placebo ( n=6). Illness was defined as diarrhea and/or vomiting post challenge in subjects with evidence of infection (defined as GII.2 norovirus RNA detection in stool and/or anti-SMV IgG seroconversion). RESULTS:The highest dose was associated with SMV infection in 90%, and illness in 70% of subjects with 10 of 12 secretor-positive (83%) and 4 of 8 secretor-negative (50%) becoming ill. There was no association between pre-challenge anti-SMV serum IgG concentration, carbohydrate-binding blockade antibody, or salivary IgA and infection. The ID50 was 5.1×10 5 GEC. CONCLUSIONS:High rates of infection and illness were observed in both secretor-positive and negative subjects in this challenge study. However, a high dose will be required to achieve the target of 75% illness to make this an efficient model for evaluating potential norovirus vaccines and therapeutics.
PMID: 35137154
ISSN: 1537-6613
CID: 5176072