Searched for: in-biosketch:yes
person:nagelk01
Organizing principles of spectro-temporal encoding in the avian primary auditory area field L
Nagel, Katherine I; Doupe, Allison J
The organization of postthalamic auditory areas remains unclear in many respects. Using a stimulus based on properties of natural sounds, we mapped spectro-temporal receptive fields (STRFs) of neurons in the primary auditory area field L of unanesthetized zebra finches. Cells were sensitive to only a subset of possible acoustic features: nearly all neurons were narrowly tuned along the spectral dimension, the temporal dimension, or both; broadly tuned and strongly orientation-sensitive cells were rare. At high stimulus intensities, neurons were sensitive to differences in sound energy along their preferred dimension, while at lower intensities, neurons behaved more like simple detectors. Finally, we found a systematic relationship between neurons' STRFs, their electrophysiological properties, and their location in field L input or output layers. These data suggest that spectral and temporal processing are segregated within field L, and provide a unifying account of how field L response properties depend on stimulus intensity.
PMCID:2547416
PMID: 18579083
ISSN: 0896-6273
CID: 1072482
Cortical mechanisms of smooth eye movements revealed by dynamic covariations of neural and behavioral responses
Schoppik, David; Nagel, Katherine I; Lisberger, Stephen G
Neural activity in the frontal eye fields controls smooth pursuit eye movements, but the relationship between single neuron responses, cortical population responses, and eye movements is not well understood. We describe an approach to dynamically link trial-to-trial fluctuations in neural responses to parallel variations in pursuit and demonstrate that individual neurons predict eye velocity fluctuations at particular moments during the course of behavior, while the population of neurons collectively tiles the entire duration of the movement. The analysis also reveals the strength of correlations in the eye movement predictions derived from pairs of simultaneously recorded neurons and suggests a simple model of cortical processing. These findings constrain the primate cortical code for movement, suggesting that either a few neurons are sufficient to drive pursuit at any given time or that many neurons operate collectively at each moment with remarkably little variation added to motor command signals downstream from the cortex.
PMCID:2426736
PMID: 18439409
ISSN: 0896-6273
CID: 876672
Temporal processing and adaptation in the songbird auditory forebrain
Nagel, Katherine I; Doupe, Allison J
Songbird auditory neurons must encode the dynamics of natural sounds at many volumes. We investigated how neural coding depends on the distribution of stimulus intensities. Using reverse-correlation, we modeled responses to amplitude-modulated sounds as the output of a linear filter and a nonlinear gain function, then asked how filters and nonlinearities depend on the stimulus mean and variance. Filter shape depended strongly on mean amplitude (volume): at low mean, most neurons integrated sound over many milliseconds, while at high mean, neurons responded more to local changes in amplitude. Increasing the variance (contrast) of amplitude modulations had less effect on filter shape but decreased the gain of firing in most cells. Both filter and gain changes occurred rapidly after a change in statistics, suggesting that they represent nonlinearities in processing. These changes may permit neurons to signal effectively over a wider dynamic range and are reminiscent of findings in other sensory systems.
PMID: 16982428
ISSN: 0896-6273
CID: 1072492