Genome-Wide MicroRNA Analysis Implicates miR-30b/d in the Etiology of Alopecia Areata
Tafazzoli, Aylar; Forstner, Andreas J; Broadley, David; Hofmann, Andrea; Redler, Silke; Petukhova, Lynn; Giehl, Kathrin A; Kruse, Roland; Blaumeiser, Bettina; Böhm, Markus; Bertolini, Marta; Rossi, Alfredo; Garcia Bartels, Natalie; Lutz, Gerhard; Wolff, Hans; Blume-Peytavi, Ulrike; Soreq, Hermona; Christiano, Angela M; Botchkareva, Natalia V; Nöthen, Markus M; Betz, Regina C
Alopecia areata (AA) is one of the most common forms of human hair loss. Although genetic studies have implicated autoimmune processes in AA etiology, understanding of the etiopathogenesis is incomplete. Recent research has implicated microRNAs, a class of small noncoding RNAs, in diverse autoimmune diseases. To our knowledge, no study has investigated the role of microRNAs in AA. In this study, gene-based analyses were performed for microRNAs using data of the largest genome-wide association meta-analysis of AA to date. Nominally, significant P-values were obtained for 78 of the 617 investigated microRNAs. After correction for multiple testing, three of the 78 microRNAs remained significant. Of these, miR-30b/d was the most significant microRNA for the follow-up analyses, which also showed lower expression in the hair follicle of AA patients. Target gene analyses for the three microRNAs showed 42 significantly associated target genes. These included IL2RA, TNXB, and ERBB3, which had been identified as susceptibility loci in previous genome-wide association studies. Using luciferase assay, site-specific miR-30b regulation of the AA risk genes IL2RA, STX17, and TNXB was validated. This study implicates microRNAs in the pathogenesis of AA. This finding may facilitate the development of future treatment strategies.
PMID: 29080678
ISSN: 1523-1747
CID: 5710492
Association Between Telomere Length and Risk of Cancer and Non-Neoplastic Diseases: A Mendelian Randomization Study
,; Haycock, Philip C; Burgess, Stephen; Nounu, Aayah; Zheng, Jie; Okoli, George N; Bowden, Jack; Wade, Kaitlin Hazel; Timpson, Nicholas J; Evans, David M; Willeit, Peter; Aviv, Abraham; Gaunt, Tom R; Hemani, Gibran; Mangino, Massimo; Ellis, Hayley Patricia; Kurian, Kathreena M; Pooley, Karen A; Eeles, Rosalind A; Lee, Jeffrey E; Fang, Shenying; Chen, Wei V; Law, Matthew H; Bowdler, Lisa M; Iles, Mark M; Yang, Qiong; Worrall, Bradford B; Markus, Hugh Stephen; Hung, Rayjean J; Amos, Chris I; Spurdle, Amanda B; Thompson, Deborah J; O'Mara, Tracy A; Wolpin, Brian; Amundadottir, Laufey; Stolzenberg-Solomon, Rachael; Trichopoulou, Antonia; Onland-Moret, N Charlotte; Lund, Eiliv; Duell, Eric J; Canzian, Federico; Severi, Gianluca; Overvad, Kim; Gunter, Marc J; Tumino, Rosario; Svenson, Ulrika; van Rij, Andre; Baas, Annette F; Bown, Matthew J; Samani, Nilesh J; van t'Hof, Femke N G; Tromp, Gerard; Jones, Gregory T; Kuivaniemi, Helena; Elmore, James R; Johansson, Mattias; Mckay, James; Scelo, Ghislaine; Carreras-Torres, Robert; Gaborieau, Valerie; Brennan, Paul; Bracci, Paige M; Neale, Rachel E; Olson, Sara H; Gallinger, Steven; Li, Donghui; Petersen, Gloria M; Risch, Harvey A; Klein, Alison P; Han, Jiali; Abnet, Christian C; Freedman, Neal D; Taylor, Philip R; Maris, John M; Aben, Katja K; Kiemeney, Lambertus A; Vermeulen, Sita H; Wiencke, John K; Walsh, Kyle M; Wrensch, Margaret; Rice, Terri; Turnbull, Clare; Litchfield, Kevin; Paternoster, Lavinia; Standl, Marie; Abecasis, Gonçalo R; SanGiovanni, John Paul; Li, Yong; Mijatovic, Vladan; Sapkota, Yadav; Low, Siew-Kee; Zondervan, Krina T; Montgomery, Grant W; Nyholt, Dale R; van Heel, David A; Hunt, Karen; Arking, Dan E; Ashar, Foram N; Sotoodehnia, Nona; Woo, Daniel; Rosand, Jonathan; Comeau, Mary E; Brown, W Mark; Silverman, Edwin K; Hokanson, John E; Cho, Michael H; Hui, Jennie; Ferreira, Manuel A; Thompson, Philip J; Morrison, Alanna C; Felix, Janine F; Smith, Nicholas L; Christiano, Angela M; Petukhova, Lynn; Betz, Regina C; Fan, Xing; Zhang, Xuejun; Zhu, Caihong; Langefeld, Carl D; Thompson, Susan D; Wang, Feijie; Lin, Xu; Schwartz, David A; Fingerlin, Tasha; Rotter, Jerome I; Cotch, Mary Frances; Jensen, Richard A; Munz, Matthias; Dommisch, Henrik; Schaefer, Arne S; Han, Fang; Ollila, Hanna M; Hillary, Ryan P; Albagha, Omar; Ralston, Stuart H; Zeng, Chenjie; Zheng, Wei; Shu, Xiao-Ou; Reis, Andre; Uebe, Steffen; Hüffmeier, Ulrike; Kawamura, Yoshiya; Otowa, Takeshi; Sasaki, Tsukasa; Hibberd, Martin Lloyd; Davila, Sonia; Xie, Gang; Siminovitch, Katherine; Bei, Jin-Xin; Zeng, Yi-Xin; Försti, Asta; Chen, Bowang; Landi, Stefano; Franke, Andre; Fischer, Annegret; Ellinghaus, David; Flores, Carlos; Noth, Imre; Ma, Shwu-Fan; Foo, Jia Nee; Liu, Jianjun; Kim, Jong-Won; Cox, David G; Delattre, Olivier; Mirabeau, Olivier; Skibola, Christine F; Tang, Clara S; Garcia-Barcelo, Merce; Chang, Kai-Ping; Su, Wen-Hui; Chang, Yu-Sun; Martin, Nicholas G; Gordon, Scott; Wade, Tracey D; Lee, Chaeyoung; Kubo, Michiaki; Cha, Pei-Chieng; Nakamura, Yusuke; Levy, Daniel; Kimura, Masayuki; Hwang, Shih-Jen; Hunt, Steven; Spector, Tim; Soranzo, Nicole; Manichaikul, Ani W; Barr, R Graham; Kahali, Bratati; Speliotes, Elizabeth; Yerges-Armstrong, Laura M; Cheng, Ching-Yu; Jonas, Jost B; Wong, Tien Yin; Fogh, Isabella; Lin, Kuang; Powell, John F; Rice, Kenneth; Relton, Caroline L; Martin, Richard M; Davey Smith, George
IMPORTANCE/OBJECTIVE:The causal direction and magnitude of the association between telomere length and incidence of cancer and non-neoplastic diseases is uncertain owing to the susceptibility of observational studies to confounding and reverse causation. OBJECTIVE:To conduct a Mendelian randomization study, using germline genetic variants as instrumental variables, to appraise the causal relevance of telomere length for risk of cancer and non-neoplastic diseases. DATA SOURCES/METHODS:Genomewide association studies (GWAS) published up to January 15, 2015. STUDY SELECTION/METHODS:GWAS of noncommunicable diseases that assayed germline genetic variation and did not select cohort or control participants on the basis of preexisting diseases. Of 163 GWAS of noncommunicable diseases identified, summary data from 103 were available. DATA EXTRACTION AND SYNTHESIS/METHODS:Summary association statistics for single nucleotide polymorphisms (SNPs) that are strongly associated with telomere length in the general population. MAIN OUTCOMES AND MEASURES/METHODS:Odds ratios (ORs) and 95% confidence intervals (CIs) for disease per standard deviation (SD) higher telomere length due to germline genetic variation. RESULTS:Summary data were available for 35 cancers and 48 non-neoplastic diseases, corresponding to 420 081 cases (median cases, 2526 per disease) and 1 093 105 controls (median, 6789 per disease). Increased telomere length due to germline genetic variation was generally associated with increased risk for site-specific cancers. The strongest associations (ORs [95% CIs] per 1-SD change in genetically increased telomere length) were observed for glioma, 5.27 (3.15-8.81); serous low-malignant-potential ovarian cancer, 4.35 (2.39-7.94); lung adenocarcinoma, 3.19 (2.40-4.22); neuroblastoma, 2.98 (1.92-4.62); bladder cancer, 2.19 (1.32-3.66); melanoma, 1.87 (1.55-2.26); testicular cancer, 1.76 (1.02-3.04); kidney cancer, 1.55 (1.08-2.23); and endometrial cancer, 1.31 (1.07-1.61). Associations were stronger for rarer cancers and at tissue sites with lower rates of stem cell division. There was generally little evidence of association between genetically increased telomere length and risk of psychiatric, autoimmune, inflammatory, diabetic, and other non-neoplastic diseases, except for coronary heart disease (OR, 0.78 [95% CI, 0.67-0.90]), abdominal aortic aneurysm (OR, 0.63 [95% CI, 0.49-0.81]), celiac disease (OR, 0.42 [95% CI, 0.28-0.61]) and interstitial lung disease (OR, 0.09 [95% CI, 0.05-0.15]). CONCLUSIONS AND RELEVANCE/CONCLUSIONS:It is likely that longer telomeres increase risk for several cancers but reduce risk for some non-neoplastic diseases, including cardiovascular diseases.
PMID: 28241208
ISSN: 2374-2445
CID: 5710472
Mechanisms and Disease Associations of Haplotype-Dependent Allele-Specific DNA Methylation
Do, Catherine; Lang, Charles F; Lin, John; Darbary, Huferesh; Krupska, Izabela; Gaba, Aulona; Petukhova, Lynn; Vonsattel, Jean-Paul; Gallagher, Mary P; Goland, Robin S; Clynes, Raphael A; Dwork, Andrew; Kral, John G; Monk, Catherine; Christiano, Angela M; Tycko, Benjamin
Haplotype-dependent allele-specific methylation (hap-ASM) can impact disease susceptibility, but maps of this phenomenon using stringent criteria in disease-relevant tissues remain sparse. Here we apply array-based and Methyl-Seq approaches to multiple human tissues and cell types, including brain, purified neurons and glia, T lymphocytes, and placenta, and identify 795 hap-ASM differentially methylated regions (DMRs) and 3,082 strong methylation quantitative trait loci (mQTLs), most not previously reported. More than half of these DMRs have cell type-restricted ASM, and among them are 188 hap-ASM DMRs and 933 mQTLs located near GWAS signals for immune and neurological disorders. Targeted bis-seq confirmed hap-ASM in 12/13 loci tested, including CCDC155, CD69, FRMD1, IRF1, KBTBD11, and S100A( *)-ILF2, associated with immune phenotypes, MYT1L, PTPRN2, CMTM8 and CELF2, associated with neurological disorders, NGFR and HLA-DRB6, associated with both immunological and brain disorders, and ZFP57, a trans-acting regulator of genomic imprinting. Polymorphic CTCF and transcription factor (TF) binding sites were over-represented among hap-ASM DMRs and mQTLs, and analysis of the human data, supplemented by cross-species comparisons to macaques, indicated that CTCF and TF binding likelihood predicts the strength and direction of the allelic methylation asymmetry. These results show that hap-ASM is highly tissue specific; an important trans-acting regulator of genomic imprinting is regulated by this phenomenon; and variation in CTCF and TF binding sites is an underlying mechanism, and maps of hap-ASM and mQTLs reveal regulatory sequences underlying supra- and sub-threshold GWAS peaks in immunological and neurological disorders.
PMCID:4863666
PMID: 27153397
ISSN: 1537-6605
CID: 2504832