Searched for: in-biosketch:yes
person:ryooh01
CDK7 Regulates the Mitochondrial Localization of a Tail-Anchored Proapoptotic Protein, Hid
Morishita, Jun; Kang, Min-Ji; Fidelin, Kevin; Ryoo, Hyung Don
The mitochondrial outer membrane is a major site of apoptosis regulation across phyla. Human and C. elegans Bcl-2 family proteins and Drosophila Hid require the C-terminal tail-anchored (TA) sequence in order to insert into the mitochondrial membrane, but it remains unclear whether cytosolic proteins actively regulate the mitochondrial localization of these proteins. Here, we report that the cdk7 complex regulates the mitochondrial localization of Hid and its ability to induce apoptosis. We identified cdk7 through an in vivo RNAi screen of genes required for cell death. Although CDK7 is best known for its role in transcription and cell-cycle progression, a hypomorphic cdk7 mutant suppressed apoptosis without impairing these other known functions. In this cdk7 mutant background, Hid failed to localize to the mitochondria and failed to bind to recombinant inhibitors of apoptosis (IAPs). These findings indicate that apoptosis is promoted by a newly identified function of CDK7, which couples the mitochondrial localization and IAP binding of Hid.
PMCID:3892150
PMID: 24360962
ISSN: 2211-1247
CID: 759772
Xbp1-independent Ire1 signaling is required for photoreceptor differentiation and rhabdomere morphogenesis in Drosophila
Coelho, Dina S; Cairrao, Fatima; Zeng, Xiaomei; Pires, Elisabete; Coelho, Ana V; Ron, David; Ryoo, Hyung Don; Domingos, Pedro M
The unfolded protein response (UPR) is composed by homeostatic signaling pathways that are activated by excessive protein misfolding in the endoplasmic reticulum. Ire1 signaling is an important mediator of the UPR, leading to the activation of the transcription factor Xbp1. Here, we show that Drosophila Ire1 mutant photoreceptors have defects in the delivery of rhodopsin-1 to the rhabdomere and in the secretion of Spacemaker/Eyes Shut into the interrhabdomeral space. However, these defects are not observed in Xbp1 mutant photoreceptors. Ire1 mutant retinas have higher mRNA levels for targets of regulated Ire1-dependent decay (RIDD), including for the fatty acid transport protein (fatp). Importantly, the downregulation of fatp by RNAi rescues the rhodopsin-1 delivery defects observed in Ire1 mutant photoreceptors. Our results show that the role of Ire1 during photoreceptor differentiation is independent of Xbp1 function and demonstrate the physiological relevance of the RIDD mechanism in this specific paradigm.
PMCID:3858604
PMID: 24183663
ISSN: 2211-1247
CID: 700742
A modified UPR stress sensing system reveals a novel tissue distribution of IRE1/XBP1 activity during normal Drosophila development
Sone, Michio; Zeng, Xiaomei; Larese, Joseph; Ryoo, Hyung Don
Eukaryotic cells respond to stress caused by the accumulation of unfolded/misfolded proteins in the endoplasmic reticulum by activating the intracellular signaling pathways referred to as the unfolded protein response (UPR). In metazoans, UPR consists of three parallel branches, each characterized by its stress sensor protein, IRE1, ATF6, and PERK, respectively. In Drosophila, IRE1/XBP1 pathway is considered to function as a major branch of UPR; however, its physiological roles during the normal development and homeostasis remain poorly understood. To visualize IRE1/XBP1 activity in fly tissues under normal physiological conditions, we modified previously reported XBP1 stress sensing systems (Souid et al., Dev Genes Evol 217: 159-167, 2007; Ryoo et al., EMBO J 26: 242-252, 2007), based on the recent reports regarding the unconventional splicing of XBP1/HAC1 mRNA (Aragon et al., Nature 457: 736-740, 2009; Yanagitani et al., Mol Cell 34: 191-200, 2009; Science 331: 586-589, 2011). The improved XBP1 stress sensing system allowed us to detect new IRE1/XBP1 activities in the brain, gut, Malpighian tubules, and trachea of third instar larvae and in the adult male reproductive organ. Specifically, in the larval brain, IRE1/XBP1 activity was detected exclusively in glia, although previous reports have largely focused on IRE1/XBP1 activity in neurons. Unexpected glial IRE1/XBP1 activity may provide us with novel insights into the brain homeostasis regulated by the UPR.
PMCID:3631089
PMID: 23160805
ISSN: 1355-8145
CID: 304812
Drosophila p53 isoforms differentially regulate apoptosis and apoptosis-induced proliferation
Dichtel-Danjoy, M-L; Ma, D; Dourlen, P; Chatelain, G; Napoletano, F; Robin, M; Corbet, M; Levet, C; Hafsi, H; Hainaut, P; Ryoo, H D; Bourdon, J-C; Mollereau, B
Irradiated or injured cells enter apoptosis, and in turn, promote proliferation of surrounding unaffected cells. In Drosophila, apoptotic cells have an active role in proliferation, where the caspase Dronc and p53 induce mitogen expression and growth in the surrounding tissues. The Drosophila p53 gene structure is conserved and encodes at least two protein isoforms: a full-length isoform (Dp53) and an N-terminally truncated isoform (DDeltaNp53). Historically, DDeltaNp53 was the first p53 isoform identified and was thought to be responsible for all p53 biological activities. It was shown that DDeltaNp53 induces apoptosis by inducing the expression of IAP antagonists, such as Reaper. Here we investigated the roles of Dp53 and DDeltaNp53 in apoptosis and apoptosis-induced proliferation. We found that both isoforms were capable of activating apoptosis, but that they each induced distinct IAP antagonists. Expression of DDeltaNp53 induced Wingless (Wg) expression and enhanced proliferation in both 'undead cells' and in 'genuine' apoptotic cells. In contrast to DDeltaNp53, Dp53 did not induce Wg expression in the absence of the endogenous p53 gene. Thus, we propose that DDeltaNp53 is the main isoform that regulates apoptosis-induced proliferation. Understanding the roles of Drosophila p53 isoforms in apoptosis and in apoptosis-induced proliferation may shed new light on the roles of p53 isoforms in humans, with important implications in cancer biology.
PMCID:3524635
PMID: 22898807
ISSN: 1350-9047
CID: 206302
Compensatory proliferation and apoptosis-induced proliferation: a need for clarification
Mollereau, B; Perez-Garijo, A; Bergmann, A; Miura, M; Gerlitz, O; Ryoo, H D; Steller, H; Morata, G
PMCID:3524636
PMID: 22722336
ISSN: 1350-9047
CID: 206292
Drosophila XBP1 Expression Reporter Marks Cells under Endoplasmic Reticulum Stress and with High Protein Secretory Load
Ryoo, Hyung Don; Li, Josepher; Kang, Min-Ji
Expression of genes in the endoplasmic reticulum (ER) beyond its protein folding capacity activates signaling pathways that are collectively referred to as the Unfolded Protein Response (UPR). A major branch of the UPR pathway is mediated by IRE1, an ER-tethered endonuclease. Upon ER stress-induced activation, IRE1 splices the mRNA of XBP1, thereby generating an active isoform of this transcription factor. During normal Drosophila development, tissues with high protein secretory load show signs of IRE1/XBP1 activity indicative of inherent ER stress associated with those cell types. Here, we report that the XBP1 promoter activity itself is enhanced in secretory tissues of Drosophila, and it can be induced by excessive ER stress. Specifically, we developed a Drosophila XBP1 transcription reporter by placing dsRed under the control of the XBP1 intergenic sequence. DsRed expression in these xbp1p>dsRed transgenic flies showed patterns similar to that of xbp1 transcript distribution. In healthy developing flies, the reporter expression was highest in salivary glands and the intestine. In the adult, the male reproductive organs showed high levels of dsRed. These tissues are known to have high protein secretory load. Consistently, the xbp1p>dsRed reporter was induced by excessive ER stress caused by mutant Rhodopsin-1 overexpression. These results suggest that secretory cells suffer from inherent ER stress, and the xbp1p>dsRed flies provide a useful tool in studying the function and homeostasis of those cells.
PMCID:3787058
PMID: 24098723
ISSN: 1932-6203
CID: 574142
Expression of human Gaucher disease gene GBA generates neurodevelopmental defects and ER stress in Drosophila eye
Suzuki, Takahiro; Shimoda, Masami; Ito, Kumpei; Hanai, Shuji; Aizawa, Hidenobu; Kato, Tomoki; Kawasaki, Kazunori; Yamaguchi, Terumi; Ryoo, Hyung Don; Goto-Inoue, Naoko; Setou, Mitsutoshi; Tsuji, Shoji; Ishida, Norio
Gaucher disease (GD) is the most common of the lysosomal storage disorders and is caused by defects in the GBA gene encoding glucocerebrosidase (GlcCerase). The accumulation of its substrate, glucocylceramide (GlcCer) is considered the main cause of GD. We found here that the expression of human mutated GlcCerase gene (hGBA) that is associated with neuronopathy in GD patients causes neurodevelopmental defects in Drosophila eyes. The data indicate that endoplasmic reticulum (ER) stress was elevated in Drosophila eye carrying mutated hGBAs by using of the ER stress markers dXBP1 and dBiP. We also found that Ambroxol, a potential pharmacological chaperone for mutated hGBAs, can alleviate the neuronopathic phenotype through reducing ER stress. We demonstrate a novel mechanism of neurodevelopmental defects mediated by ER stress through expression of mutants of human GBA gene in the eye of Drosophila.
PMCID:3732251
PMID: 23936319
ISSN: 1932-6203
CID: 761512
The role of apoptosis-induced proliferation for regeneration and cancer
Ryoo, Hyung Don; Bergmann, Andreas
Genes dedicated to killing cells must have evolved because of their positive effects on organismal survival. Positive functions of apoptotic genes have been well established in a large number of biological contexts, including their role in eliminating damaged and potentially cancerous cells. More recently, evidence has suggested that proapoptotic proteins-mostly caspases-can induce proliferation of neighboring surviving cells to replace dying cells. This process, that we will refer to as "apoptosis-induced proliferation," may be critical for stem cell activity and tissue regeneration. Depending on the caspases involved, at least two distinct types of apoptosis-induced proliferation can be distinguished. One of these types have been studied using a model in which cells have initiated cell death, but are prevented from executing it because of effector caspase inhibition, thereby generating "undead" cells that emit persistent mitogen signaling and overgrowth. Such conditions are likely to contribute to certain forms of cancer. In this review, we summarize the current knowledge of apoptosis-induced proliferation and discuss its relevance for tissue regeneration and cancer.
PMCID:3405855
PMID: 22855725
ISSN: 1943-0264
CID: 174400
Pro-apoptotic signaling pathway by CDK5 and MEKK1
Ryoo, Hyung Don
Comment on: Kang MJ, et al. Nat Cell Biol 2012; In press.
PMCID:3372387
PMID: 22510567
ISSN: 1551-4005
CID: 166825
CDK5 and MEKK1 mediate pro-apoptotic signalling following endoplasmic reticulum stress in an autosomal dominant retinitis pigmentosa model
Kang, Min-Ji; Chung, Jaehoon; Ryoo, Hyung Don
Chronic stress in the endoplasmic reticulum (ER) underlies many degenerative and metabolic diseases involving apoptosis of vital cells. A well-established example is autosomal dominant retinitis pigmentosa (ADRP), an age-related retinal degenerative disease caused by mutant rhodopsins. Similar mutant alleles of Drosophila Rhodopsin-1 also impose stress on the ER and cause age-related retinal degeneration in that organism. Well-characterized signalling responses to ER stress, referred to as the unfolded protein response (UPR), induce various ER quality control genes that can suppress such retinal degeneration. However, how cells activate cell death programs after chronic ER stress remains poorly understood. Here, we report the identification of a signalling pathway mediated by cdk5 and mekk1 required for ER-stress-induced apoptosis. Inactivation of these genes specifically suppressed apoptosis, without affecting other protective branches of the UPR. CDK5 phosphorylates MEKK1, and together, they activate the JNK pathway for apoptosis. Moreover, disruption of this pathway can delay the course of age-related retinal degeneration in a Drosophila model of ADRP. These findings establish a previously unrecognized branch of ER-stress response signalling involved in degenerative diseases.
PMCID:3319494
PMID: 22388889
ISSN: 1465-7392
CID: 163572