Searched for: in-biosketch:yes
person:smiths04
Protein requirements for sister telomere association in human cells
Canudas, Silvia; Houghtaling, Benjamin R; Kim, Ju Youn; Dynek, Jasmin N; Chang, William G; Smith, Susan
Previous studies in human cells indicate that sister telomeres have distinct requirements for their separation at mitosis. In cells depleted for tankyrase 1, a telomeric poly(ADP-ribose) polymerase, sister chromatid arms and centromeres separate normally, but telomeres remain associated and cells arrest in mitosis. Here, we use biochemical and genetic approaches to identify proteins that might mediate the persistent association at sister telomeres. We use immunoprecipitation analysis to show that the telomeric proteins, TRF1 (an acceptor of PARsylation by tankyrase 1) and TIN2 (a TRF1 binding partner) each bind to the SA1 ortholog of the cohesin Scc3 subunit. Sucrose gradient sedimentation shows that TRF1 cosediments with the SA1-cohesin complex. Depletion of the SA1 cohesin subunit or the telomeric proteins (TRF1 and TIN2) restores the normal resolution of sister telomeres in mitosis in tankyrase 1-depleted cells. Moreover, depletion of TRF1 and TIN2 or SA1 abrogates the requirement for tankyrase 1 in mitotic progression. Our studies indicate that sister telomere association in human cells is mediated by a novel association between a cohesin subunit and components of telomeric chromatin
PMCID:2099466
PMID: 17962804
ISSN: 1460-2075
CID: 75398
Tankyrase 2 poly(ADP-ribose) polymerase domain-deleted mice exhibit growth defects but have normal telomere length and capping
Hsiao, Susan J; Poitras, Marc F; Cook, Brandoch D; Liu, Yie; Smith, Susan
Regulation of telomere length maintenance and capping are a critical cell functions in both normal and tumor cells. Tankyrase 2 (Tnks2) is a poly(ADP-ribose) polymerase (PARP) that has been shown to modify itself and TRF1, a telomere-binding protein. We show here by overexpression studies that tankyrase 2, like its closely related homolog tankyrase 1, can function as a positive regulator of telomere length in human cells, dependent on its catalytic PARP activity. To study the role of Tnks2 in vivo, we generated mice with the Tnks2 PARP domain deleted. These mice are viable and fertile but display a growth retardation phenotype. Telomere analysis by quantitative fluorescence in situ hybridization (FISH), flow-FISH, and restriction fragment analysis showed no change in telomere length or telomere capping in these mice. To determine the requirement for Tnks2 in long-term maintenance of telomeres, we generated embryonic stem cells with the Tnks2 PARP domain deleted and observed no change, even upon prolonged growth, in telomere length or telomere capping. Together, these results suggest that Tnks2 has a role in normal growth and development but is not essential for telomere length maintenance or telomere capping in mice
PMCID:1430302
PMID: 16507985
ISSN: 0270-7306
CID: 64582
NuMA is a major acceptor of poly(ADP-ribosyl)ation by tankyrase 1 in mitosis
Chang, William; Dynek, Jasmin N; Smith, Susan
Tankyrase 1 is a PARP [poly(ADP-ribose) polymerase] that localizes to multiple subcellular sites, including telomeres and mitotic centrosomes. Previous studies demonstrated that cells deficient in tankyrase 1 suffered a block in resolution of sister telomeres and arrested in early anaphase [Dynek and Smith (2004) Science 304, 97-100]. This phenotype was dependent on the catalytic PARP activity of tankyrase 1. To identify critical acceptors of PARsylation [poly(ADP-ribosyl)ation] by tankyrase 1 in mitosis, tankyrase 1 immunoprecipitates were analysed for associated PARsylated proteins. We identified NuMA (nuclear mitotic apparatus protein) as a major acceptor of poly(ADP-ribose) from tankyrase 1 in mitosis. We showed by immunofluorescence and immunoprecipitation that association between tankyrase 1 and NuMA increases dramatically at the onset of mitosis, concomitant with PARsylation of NuMA. Knockdown of tankyrase 1 by siRNA (small interfering RNA) eliminates PARsylation of NuMA in mitosis, confirming tankyrase 1 as the PARP responsible for this modification. However, even in the absence of tankyrase 1 and PARsylation, NuMA localizes to spindle poles. By contrast, siRNA knockdown of NuMA results in complete loss of tankyrase 1 from spindle poles. We discuss our result in terms of a model where PARsylation of NuMA by tankyrase 1 in mitosis could play a role in sister telomere separation and/or mitotic progression
PMCID:1276914
PMID: 16076287
ISSN: 1470-8728
CID: 58149
A dynamic molecular link between the telomere length regulator TRF1 and the chromosome end protector TRF2
Houghtaling, Benjamin R; Cuttonaro, Leanora; Chang, William; Smith, Susan
BACKGROUND: Human telomeres are coated by the telomere repeat binding proteins TRF1 and TRF2, which are believed to function independently to regulate telomere length and protect chromosome ends, respectively. RESULTS: Here, we show that TRF1 and TRF2 are linked via TIN2, a previously identified TRF1-interacting protein, and its novel binding partner TINT1. TINT1 localized to telomeres via TIN2, where it functioned as a negative regulator of telomerase-mediated telomere elongation. TIN2 associated with TINT1, and TRF1 or TRF2 throughout the cell cycle, revealing a partially redundant unit in telomeric chromatin that may provide flexibility in telomere length control. Indeed, when TRF1 was removed from telomeres by overexpression of the positive telomere length regulator tankyrase 1, the TIN2/TINT1 complex remained on telomeres via an increased association with TRF2. CONCLUSIONS: Our findings suggest a dynamic cross talk between TRF1 and TRF2 and provide a molecular mechanism for telomere length homeostasis by TRF2 in the absence of TRF1
PMID: 15380063
ISSN: 0960-9822
CID: 46295
Resolution of sister telomere association is required for progression through mitosis
Dynek, Jasmin N; Smith, Susan
Cohesins keep sister chromatids associated from the time of their replication in S phase until the onset of anaphase. In vertebrate cells, two distinct pathways dissociate cohesins, one acts on chromosome arms and the other on centromeres. Here, we describe a third pathway that acts on telomeres. Knockdown of tankyrase 1, a telomeric poly(ADP-ribose) polymerase caused mitotic arrest. Chromosomes aligned normally on the metaphase plate but were unable to segregate. Sister chromatids separated at centromeres and arms but remained associated at telomeres, apparently through proteinaceous bridges. Thus, telomeres may require a unique tankyrase 1-dependent mechanism for sister chromatid resolution before anaphase
PMID: 15064417
ISSN: 1095-9203
CID: 42576
Functional subdomain in the ankyrin domain of tankyrase 1 required for poly(ADP-ribosyl)ation of TRF1 and telomere elongation
Seimiya, Hiroyuki; Muramatsu, Yukiko; Smith, Susan; Tsuruo, Takashi
In human cells, telomere elongation by telomerase is repressed in cis by the telomeric protein TRF1. Tankyrase 1 binds TRF1 via its ankyrin domain and poly(ADP-ribosyl)ates it. Overexpression of tankyrase 1 in telomerase-positive cells releases TRF1 from telomeres, resulting in telomere elongation. The tankyrase 1 ankyrin domain is classified into five conserved subdomains, ARCs (ankyrin repeat clusters) I to V. Here, we investigated the biological significance of the ARCs. First, each ARC worked as an independent binding site for TRF1. Second, ARCs II to V recognized the N-terminal acidic domain of TRF1 whereas ARC I bound a discrete site between the homodimerization and the Myb-like domains of TRF1. Inactivation of TRF1 binding in the C-terminal ARC, ARC V, either by deletion or point mutation, significantly reduced the ability of tankyrase 1 to poly(ADP-ribosyl)ate TRF1, release TRF1 from telomeres, and elongate telomeres. In contrast, other ARCs, ARC II and/or IV, inactivated by point mutations still retained the biological function of tankyrase 1. On the other hand, ARC V per se was not sufficient for telomere elongation, suggesting a structural role for multiple ARCs. This work provides evidence that specific ARC-TRF1 interactions play roles in the essential catalytic function of tankyrase 1
PMCID:350561
PMID: 14966275
ISSN: 0270-7306
CID: 137818
TRF1 is degraded by ubiquitin-mediated proteolysis after release from telomeres
Chang, William; Dynek, Jasmin N; Smith, Susan
Mammalian telomeres are coated by the sequence-specific, DNA-binding protein, TRF1, a negative regulator of telomere length. Previous results showed that ADP-ribosylation of TRF1 by tankyrase 1 released TRF1 from telomeres and promoted telomere elongation. We now show that loss of TRF1 from telomeres results in ubiquitination and degradation of TRF1 by the proteasome and that degradation is required to keep TRF1 off telomeres. Ubiquitination of TRF1 is regulated by its telomere-binding status; only the telomere-unbound form of TRF1 is ubiquitinated. Our findings suggest a novel mechanism of sequential post translational modification of TRF1 (ADP-ribosylation and ubiquitination) for regulating access of telomerase to telomeres
PMCID:196064
PMID: 12782650
ISSN: 0890-9369
CID: 36833
The telomeric poly(ADP-ribose) polymerase, tankyrase 1, contains multiple binding sites for telomeric repeat binding factor 1 (TRF1) and a novel acceptor, 182-kDa tankyrase-binding protein (TAB182)
Seimiya, Hiroyuki; Smith, Susan
Tankyrase 1, a human telomeric poly(ADP-ribose) polymerase, was originally identified through its interaction with TRF1, a negative regulator of telomere length. Tankyrase 1 ADP-ribosylates TRF1 in vitro, and its overexpression induces telomere elongation in human cancer cells. In addition to its telomeric localization, tankyrase 1 resides at multiple subcellular sites, suggesting additional functions for this protein. Here we identify TAB182, a novel tankyrase 1-binding protein of 182 kDa. TAB182 displays a complex pattern of subcellular localization. TAB182 localizes to the nucleus in a heterochromatic staining pattern and to the cytoplasm, where it co-stains with the cortical actin network. TAB182 coimmunoprecipitates with tankyrase 1 from human cells and serves as an acceptor of poly(ADP-ribosyl)ation by tankyrase 1 in vitro. Like TRF1, TAB182 binds to the ankyrin domain (comprising 24 ankyrin repeats) of tankyrase 1. Surprisingly, dissection of this domain reveals multiple discrete and overlapping binding sites for TRF1 and TAB182. Thus, we demonstrate five well conserved ankyrin repeat clusters in tankyrase 1. Although each of the five ankyrin repeat clusters independently binds to TRF1, only three of the five bind toTAB182. These findings suggest that tankyrase 1 may act as a scaffold for large molecular mass complexes made up of multiple binding proteins. We discuss potential roles for tankyrase 1-mediated higher order complexes at telomeres and at other subcellular sites
PMID: 11854288
ISSN: 0021-9258
CID: 39708
Role for the Related Poly(ADP-Ribose) Polymerases Tankyrase 1 and 2 at Human Telomeres
Cook, Brandoch D; Dynek, Jasmin N; Chang, William; Shostak, Grigoriy; Smith, Susan
Telomere maintenance is essential for the continuous growth of tumor cells. In most human tumors telomeres are maintained by telomerase, a specialized reverse transcriptase. Tankyrase 1, a human telomeric poly(ADP-ribose) polymerase (PARP), positively regulates telomere length through its interaction with TRF1, a telomeric DNA-binding protein. Tankyrase 1 ADP-ribosylates TRF1, inhibiting its binding to telomeric DNA. Overexpression of tankyrase 1 in the nucleus promotes telomere elongation, suggesting that tankyrase 1 regulates access of telomerase to the telomeric complex. The recent identification of a closely related homolog of tankyrase 1, tankyrase 2, opens the possibility for a second PARP at telomeres. We therefore sought to establish the role of tankyrase 1 at telomeres and to determine if tankyrase 2 might have a telomeric function. We show that endogenous tankyrase 1 is a component of the human telomeric complex. We demonstrate that telomere elongation by tankyrase 1 requires the catalytic activity of the PARP domain and does not occur in telomerase-negative primary human cells. To investigate a potential role for tankyrase 2 at telomeres, recombinant tankyrase 2 was subjected to an in vitro PARP assay. Tankyrase 2 poly(ADP-ribosyl)ated itself and TRF1. Overexpression of tankyrase 2 in the nucleus released endogenous TRF1 from telomeres. These findings establish tankyrase 2 as a bona fide PARP, with itself and TRF1 as acceptors of ADP-ribosylation, and suggest the possibility of a role for tankyrase 2 at telomeres
PMCID:134233
PMID: 11739745
ISSN: 0270-7306
CID: 24853
The world according to PARP
Smith S
An immediate cellular response to DNA damage is the synthesis of poly(ADP-ribose) by the enzyme poly(ADP-ribose) polymerase (PARP). This nuclear enzyme and the unique post-translational modification it catalyzes have long been considered to function exclusively in cellular surveillance of genotoxic stress. The recent identification of multiple members of a PARP family might force a revision of this concept. The novel primary structures and subcellular localizations for some of these PARPs suggests new and unexpected roles for poly(ADP-ribosyl)ation in telomere replication and cellular transport
PMID: 11246023
ISSN: 0968-0004
CID: 20290