Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:stoked01

Total Results:

107


Inward-facing conformation of the zinc transporter YiiP revealed by cryoelectron microscopy

Coudray, Nicolas; Valvo, Salvatore; Hu, Minghui; Lasala, Ralph; Kim, Changki; Vink, Martin; Zhou, Ming; Provasi, Davide; Filizola, Marta; Tao, Juoehi; Fang, Jia; Penczek, Pawel A; Ubarretxena-Belandia, Iban; Stokes, David L
YiiP is a dimeric Zn(2+)/H(+) antiporter from Escherichia coli belonging to the cation diffusion facilitator family. We used cryoelectron microscopy to determine a 13-A resolution structure of a YiiP homolog from Shewanella oneidensis within a lipid bilayer in the absence of Zn(2+). Starting from the X-ray structure in the presence of Zn(2+), we used molecular dynamics flexible fitting to build a model consistent with our map. Comparison of the structures suggests a conformational change that involves pivoting of a transmembrane, four-helix bundle (M1, M2, M4, and M5) relative to the M3-M6 helix pair. Although accessibility of transport sites in the X-ray model indicates that it represents an outward-facing state, our model is consistent with an inward-facing state, suggesting that the conformational change is relevant to the alternating access mechanism for transport. Molecular dynamics simulation of YiiP in a lipid environment was used to address the feasibility of this conformational change. Association of the C-terminal domains is the same in both states, and we speculate that this association is responsible for stabilizing the dimer that, in turn, may coordinate the rearrangement of the transmembrane helices.
PMCID:3568326
PMID: 23341604
ISSN: 0027-8424
CID: 249132

Modeling, Docking, and Fitting of Atomic Structures to 3D Maps from Cryo-Electron Microscopy

Allen, Gregory S; Stokes, David L
Electron microscopy (EM) and image analysis offer an effective approach for determining the three-dimensional structure of macromolecular complexes. The versatility of these methods means that molecular species not normally amenable to other structural methods, e.g., X-ray crystallography and NMR spectroscopy, can be analyzed. However, the resolution of EM structures is often too low to provide an atomic model directly by chain tracing. Instead, a combination of modeling and fitting can be an effective way to analyze the EM structure at an atomic level, thus allowing localization of subunits or evaluation of conformational changes. Here we describe the steps involved in this process: building a homology model, fitting this model to an EM map, and using computational methods for docking of additional domains to the model. As an example, we illustrate the methods using an integral membrane protein, CopA, which functions to pump copper across the membrane in an ATP-dependent manner. In this example, we build a homology model based on the published atomic coordinates for a related calcium pump from sarcoplasmic reticulum (SERCA). After fitting this homology model to a 17 A resolution EM map, computational software is used to dock a metal-binding domain (MBD) that is unique to the copper pump. Although this software identifies a number of plausible interfaces for docking, the constraints of the EM map steer us to select a unique solution. Thus, the synergy of these two methods allows us to describe both the location of the unknown MBD relative to the other cytoplasmic domains and the atomic details of the domain interface.
PMCID:3645293
PMID: 23132064
ISSN: 1064-3745
CID: 202212

High-throughput methods for electron crystallography

Stokes, David L; Ubarretxena-Belandia, Iban; Gonen, Tamir; Engel, Andreas
Membrane proteins play a tremendously important role in cell physiology and serve as a target for an increasing number of drugs. Structural information is key to understanding their function and for developing new strategies for combating disease. However, the complex physical chemistry associated with membrane proteins has made them more difficult to study than their soluble cousins. Electron crystallography has historically been a successful method for solving membrane protein structures and has the advantage of providing a native lipid environment for these proteins. Specifically, when membrane proteins form two-dimensional arrays within a lipid bilayer, electron microscopy can be used to collect images and diffraction and the corresponding data can be combined to produce a three-dimensional reconstruction, which under favorable conditions can extend to atomic resolution. Like X-ray crystallography, the quality of the structures are very much dependent on the order and size of the crystals. However, unlike X-ray crystallography, high-throughput methods for screening crystallization trials for electron crystallography are not in general use. In this chapter, we describe two alternative methods for high-throughput screening of membrane protein crystallization within the lipid bilayer. The first method relies on the conventional use of dialysis for removing detergent and thus reconstituting the bilayer; an array of dialysis wells in the standard 96-well format allows the use of a liquid-handling robot and greatly increases throughput. The second method relies on titration of cyclodextrin as a chelating agent for detergent; a specialized pipetting robot has been designed not only to add cyclodextrin in a systematic way, but to use light scattering to monitor the reconstitution process. In addition, the use of liquid-handling robots for making negatively stained grids and methods for automatically imaging samples in the electron microscope are described.
PMCID:3644976
PMID: 23132066
ISSN: 1064-3745
CID: 202222

The physical state of lipid substrates provides transacylation specificity for tafazzin

Schlame, Michael; Acehan, Devrim; Berno, Bob; Xu, Yang; Valvo, Salvatore; Ren, Mindong; Stokes, David L; Epand, Richard M
Cardiolipin is a mitochondrial phospholipid with a characteristic acyl chain composition that depends on the function of tafazzin, a phospholipid-lysophospholipid transacylase, although the enzyme itself lacks acyl specificity. We incubated isolated tafazzin with various mixtures of phospholipids and lysophospholipids, characterized the lipid phase by (31)P-NMR and measured newly formed molecular species by MS. Substantial transacylation was observed only in nonbilayer lipid aggregates, and the substrate specificity was highly sensitive to the lipid phase. In particular, tetralinoleoyl-cardiolipin, a prototype molecular species, formed only under conditions that favor the inverted hexagonal phase. In isolated mitochondria, <1% of lipids participated in transacylations, suggesting that the action of tafazzin was limited to privileged lipid domains. We propose that tafazzin reacts with non-bilayer-type lipid domains that occur in curved or hemifused membrane zones and that acyl specificity is driven by the packing properties of these domains.
PMCID:3699345
PMID: 22941046
ISSN: 1552-4450
CID: 211022

Membrane protein structure determination by electron crystallography

Ubarretxena-Belandia, Iban; Stokes, David L
During the past year, electron crystallography of membrane proteins has provided structural insights into the mechanism of several different transporters and into their interactions with lipid molecules within the bilayer. From a technical perspective there have been important advances in high-throughput screening of crystallization trials and in automated imaging of membrane crystals with the electron microscope. There have also been key developments in software, and in molecular replacement and phase extension methods designed to facilitate the process of structure determination.
PMCID:3423591
PMID: 22572457
ISSN: 0959-440x
CID: 177223

Antigen-induced release and retroviral subversion of TCR-enriched microvesicles at the CD4+T cell immunological synapse [Meeting Abstract]

Choudhuri, Kaushik; Llodra, Jaime; Kam, Lance; Stokes, David; Dustin, Micheal
ISI:000304659700415
ISSN: 0022-1767
CID: 169542

Tafazzin knockdown in mice leads to a developmental cardiomyopathy with early diastolic dysfunction preceding myocardial noncompaction

Phoon, Colin K L; Acehan, Devrim; Schlame, Michael; Stokes, David L; Edelman-Novemsky, Irit; Yu, Dawen; Xu, Yang; Viswanathan, Nitya; Ren, Mindong
BACKGROUND: Barth syndrome is a rare, multisystem disorder caused by mutations in tafazzin that lead to cardiolipin deficiency and mitochondrial abnormalities. Patients most commonly develop an early-onset cardiomyopathy in infancy or fetal life. METHODS AND RESULTS: Knockdown of tafazzin (TAZKD) in a mouse model was induced from the start of gestation via a doxycycline-inducible shRNA transgenic approach. All liveborn TAZKD mice died within the neonatal period, and in vivo echocardiography revealed prenatal loss of TAZKD embryos at E12.5-14.5. TAZKD E13.5 embryos and newborn mice demonstrated significant tafazzin knockdown, and mass spectrometry analysis of hearts revealed abnormal cardiolipin profiles typical of Barth syndrome. Electron microscopy of TAZKD hearts demonstrated ultrastructural abnormalities in mitochondria at both E13.5 and newborn stages. Newborn TAZKD mice exhibited a significant reduction in total mitochondrial area, smaller size of individual mitochondria, reduced cristae density, and disruption of the normal parallel orientation between mitochondria and sarcomeres. Echocardiography of E13.5 and newborn TAZKD mice showed good systolic function, but early diastolic dysfunction was evident from an abnormal flow pattern in the dorsal aorta. Strikingly, histology of E13.5 and newborn TAZKD hearts showed myocardial thinning, hypertrabeculation and noncompaction, and defective ventricular septation. Altered cellular proliferation occurring within a narrow developmental window accompanied the myocardial hypertrabeculation-noncompaction. CONCLUSIONS: In this murine model, tafazzin deficiency leads to a unique developmental cardiomyopathy characterized by ventricular myocardial hypertrabeculation-noncompaction and early lethality. A central role of cardiolipin and mitochondrial functioning is strongly implicated in cardiomyocyte differentiation and myocardial patterning required for heart development. (J Am Heart Assoc. 2012;1:jah3-e000455 doi: 10.1161/JAHA.111.000455.).
PMCID:3487377
PMID: 23130124
ISSN: 2047-9980
CID: 180952

Outcome of the first electron microscopy validation task force meeting

Henderson, Richard; Sali, Andrej; Baker, Matthew L; Carragher, Bridget; Devkota, Batsal; Downing, Kenneth H; Egelman, Edward H; Feng, Zukang; Frank, Joachim; Grigorieff, Nikolaus; Jiang, Wen; Ludtke, Steven J; Medalia, Ohad; Penczek, Pawel A; Rosenthal, Peter B; Rossmann, Michael G; Schmid, Michael F; Schroder, Gunnar F; Steven, Alasdair C; Stokes, David L; Westbrook, John D; Wriggers, Willy; Yang, Huanwang; Young, Jasmine; Berman, Helen M; Chiu, Wah; Kleywegt, Gerard J; Lawson, Catherine L
This Meeting Review describes the proceedings and conclusions from the inaugural meeting of the Electron Microscopy Validation Task Force organized by the Unified Data Resource for 3DEM (http://www.emdatabank.org) and held at Rutgers University in New Brunswick, NJ on September 28 and 29, 2010. At the workshop, a group of scientists involved in collecting electron microscopy data, using the data to determine three-dimensional electron microscopy (3DEM) density maps, and building molecular models into the maps explored how to assess maps, models, and other data that are deposited into the Electron Microscopy Data Bank and Protein Data Bank public data archives. The specific recommendations resulting from the workshop aim to increase the impact of 3DEM in biology and medicine.
PMCID:3328769
PMID: 22325770
ISSN: 0969-2126
CID: 159336

Real-space processing of helical filaments in SPARX

Behrmann, Elmar; Tao, Guozhi; Stokes, David L; Egelman, Edward H; Raunser, Stefan; Penczek, Pawel A
We present a major revision of the iterative helical real-space refinement (IHRSR) procedure and its implementation in the SPARX single particle image processing environment. We built on over a decade of experience with IHRSR helical structure determination and we took advantage of the flexible SPARX infrastructure to arrive at an implementation that offers ease of use, flexibility in designing helical structure determination strategy, and high computational efficiency. We introduced the 3D projection matching code which now is able to work with non-cubic volumes, the geometry better suited for long helical filaments, we enhanced procedures for establishing helical symmetry parameters, and we parallelized the code using distributed memory paradigm. Additional features include a graphical user interface that facilitates entering and editing of parameters controlling the structure determination strategy of the program. In addition, we present a novel approach to detect and evaluate structural heterogeneity due to conformer mixtures that takes advantage of helical structure redundancy.
PMCID:3288516
PMID: 22248449
ISSN: 1047-8477
CID: 157755

Reconstitution of Acyl Specific Phospholipid Remodeling by Purified Tafazzin In Vitro [Meeting Abstract]

Schlame, Michael; Acehan, Devrim; Berno, Bob; Xu, Yang; Ren, Mindong; Stokes, David L; Epand, Richard M
ISI:000321561202053
ISSN: 0006-3495
CID: 2544862