Searched for: in-biosketch:yes
person:svirsm01
Enhancing Intervention for Residual Rhotic Errors Via App-Delivered Biofeedback: A Case Study
Byun, Tara McAllister; Campbell, Heather; Carey, Helen; Liang, Wendy; Park, Tae Hong; Svirsky, Mario
Purpose: Recent research suggests that visual-acoustic biofeedback can be an effective treatment for residual speech errors, but adoption remains limited due to barriers including high cost and lack of familiarity with the technology. This case study reports results from the first participant to complete a course of visual-acoustic biofeedback using a not-for-profit iOS app, Speech Therapist's App for /r/ Treatment. Method: App-based biofeedback treatment for rhotic misarticulation was provided in weekly 30-min sessions for 20 weeks. Within-treatment progress was documented using clinician perceptual ratings and acoustic measures. Generalization gains were assessed using acoustic measures of word probes elicited during baseline, treatment, and maintenance sessions. Results: Both clinician ratings and acoustic measures indicated that the participant significantly improved her rhotic production accuracy in trials elicited during treatment sessions. However, these gains did not transfer to generalization probes. Conclusions: This study provides a proof-of-concept demonstration that app-based biofeedback is a viable alternative to costlier dedicated systems. Generalization of gains to contexts without biofeedback remains a challenge that requires further study. App-delivered biofeedback could enable clinician-research partnerships that would strengthen the evidence base while providing enhanced treatment for children with residual rhotic errors. Supplemental Material: https://doi.org/10.23641/asha.5116318.
PMCID:5544407
PMID: 28655050
ISSN: 1558-9102
CID: 2613622
Self-Selection of Frequency Tables with Bilateral Mismatches in an Acoustic Simulation of a Cochlear Implant
Fitzgerald, Matthew B; Prosolovich, Ksenia; Tan, Chin-Tuan; Glassman, E Katelyn; Svirsky, Mario A
BACKGROUND: Many recipients of bilateral cochlear implants (CIs) may have differences in electrode insertion depth. Previous reports indicate that when a bilateral mismatch is imposed, performance on tests of speech understanding or sound localization becomes worse. If recipients of bilateral CIs cannot adjust to a difference in insertion depth, adjustments to the frequency table may be necessary to maximize bilateral performance. PURPOSE: The purpose of this study was to examine the feasibility of using real-time manipulations of the frequency table to offset any decrements in performance resulting from a bilateral mismatch. RESEARCH DESIGN: A simulation of a CI was used because it allows for explicit control of the size of a bilateral mismatch. Such control is not available with users of CIs. STUDY SAMPLE: A total of 31 normal-hearing young adults participated in this study. DATA COLLECTION AND ANALYSIS: Using a CI simulation, four bilateral mismatch conditions (0, 0.75, 1.5, and 3 mm) were created. In the left ear, the analysis filters and noise bands of the CI simulation were the same. In the right ear, the noise bands were shifted higher in frequency to simulate a bilateral mismatch. Then, listeners selected a frequency table in the right ear that was perceived as maximizing bilateral speech intelligibility. Word-recognition scores were then assessed for each bilateral mismatch condition. Listeners were tested with both a standard frequency table, which preserved a bilateral mismatch, or with their self-selected frequency table. RESULTS: Consistent with previous reports, bilateral mismatches of 1.5 and 3 mm yielded decrements in word recognition when the standard table was used in both ears. However, when listeners used the self-selected frequency table, performance was the same regardless of the size of the bilateral mismatch. CONCLUSIONS: Self-selection of a frequency table appears to be a feasible method for ameliorating the negative effects of a bilateral mismatch. These data may have implications for recipients of bilateral CIs who cannot adapt to a bilateral mismatch, because they suggest that (1) such individuals may benefit from modification of the frequency table in one ear and (2) self-selection of a "most intelligible" frequency table may be a useful tool for determining how the frequency table should be altered to optimize speech recognition.
PMCID:5563263
PMID: 28534729
ISSN: 2157-3107
CID: 2574732
Pitch Matching between Electrical Stimulation of a Cochlear Implant and Acoustic Stimuli Presented to a Contralateral Ear with Residual Hearing
Tan, Chin-Tuan; Martin, Brett; Svirsky, Mario A
BACKGROUND: Cochlear implants (CIs) successfully restore hearing in postlingually deaf adults, but in doing so impose a frequency-position function in the cochlea that may differ from the physiological one. PURPOSE: The CI-imposed frequency-position function is determined by the frequency allocation table programmed into the listener's speech processor and by the location of the electrode array along the cochlea. To what extent can postlingually deaf CI users successfully adapt to the difference between physiological and CI-imposed frequency-position functions? RESEARCH DESIGN: We attempt to answer the question by combining behavioral measures of electroacoustic pitch matching (PM) and measures of electrode location within the cochlea. STUDY SAMPLE: The participants in this study were 16 adult CI users with residual hearing who could match the pitch of acoustic pure tones presented to their unimplanted ears to the pitch resulting from stimulation of different CI electrodes. DATA COLLECTION AND ANALYSIS: We obtained data for four to eight apical electrodes from 16 participants with CIs (most of whom were long-term users), and estimated electrode insertion angle for 12 of these participants. PM functions in this group were compared with the two frequency-position functions discussed above. RESULTS: Taken together, the findings were consistent with the possibility that adaptation to the frequency-position function imposed by CIs does happen, but it is not always complete. CONCLUSIONS: Some electrodes continue to be perceived as higher pitched than the acoustic frequencies with which they are associated despite years of listening experience after cochlear implantation.
PMCID:5435235
PMID: 28277210
ISSN: 2157-3107
CID: 2476332
Contribution of formant frequency information to vowel perception in steady-state noise by cochlear implant users
Sagi, Elad; Svirsky, Mario A
Cochlear implant (CI) recipients have difficulty understanding speech in noise even at moderate signal-to-noise ratios. Knowing the mechanisms they use to understand speech in noise may facilitate the search for better speech processing algorithms. In the present study, a computational model is used to assess whether CI users' vowel identification in noise can be explained by formant frequency cues (F1 and F2). Vowel identification was tested with 12 unilateral CI users in quiet and in noise. Formant cues were measured from vowels in each condition, specific to each subject's speech processor. Noise distorted the location of vowels in the F2 vs F1 plane in comparison to quiet. The best fit model to subjects' data in quiet produced model predictions in noise that were within 8% of actual scores on average. Predictions in noise were much better when assuming that subjects used a priori knowledge regarding how formant information is degraded in noise (experiment 1). However, the model's best fit to subjects' confusion matrices in noise was worse than in quiet, suggesting that CI users utilize formant cues to identify vowels in noise, but to a different extent than how they identify vowels in quiet (experiment 2).
PMCID:5392095
PMID: 28253672
ISSN: 1520-8524
CID: 2471552
Self-Reported Usage, Functional Benefit, and Audiologic Characteristics of Cochlear Implant Patients Who Use a Contralateral Hearing Aid
Neuman, Arlene C; Waltzman, Susan B; Shapiro, William H; Neukam, Jonathan D; Zeman, Annette M; Svirsky, Mario A
Ninety-four unilateral CI patients with bimodal listening experience (CI plus HA in contralateral ear) completed a questionnaire that focused on attitudes toward hearing aid use postimplantation, patterns of usage, and perceived bimodal benefits in daily life. Eighty participants continued HA use and 14 discontinued HA use at the time of the questionnaire. Participant responses provided useful information for counseling patients both before and after implantation. The majority of continuing bimodal (CI plus HA) participants reported adapting to using both devices within 3 months and also reported that they heard better bimodally in quiet, noisy, and reverberant conditions. They also perceived benefits including improved sound quality, better music enjoyment, and sometimes a perceived sense of acoustic balance. Those who discontinued HA use found either that using the HA did not provide additional benefit over the CI alone or that using the HA degraded the signal from the CI. Because there was considerable overlap in the audiograms and in speech recognition performance in the unimplanted ear between the two groups, we recommend that unilateral CI recipients are counseled to continue to use the HA in the contralateral ear postimplantation in order to determine whether or not they receive functional or perceived benefit from using both devices together.
PMCID:5435367
PMID: 28351216
ISSN: 2331-2165
CID: 2508302
Initial Operative Experience and Short-term Hearing Preservation Results With a Mid-scala Cochlear Implant Electrode Array
Svrakic, Maja; Roland, J Thomas Jr; McMenomey, Sean O; Svirsky, Mario A
OBJECTIVE: To describe our initial operative experience and hearing preservation results with the Advanced Bionics (AB) Mid Scala Electrode (MSE). STUDY DESIGN: Retrospective review. SETTING: Tertiary referral center. PATIENTS: Sixty-three MSE implants in pediatric and adult patients were compared with age- and sex-matched 1j electrode implants from the same manufacturer. All patients were severe to profoundly deaf. INTERVENTION: Cochlear implantation with either the AB 1j electrode or the AB MSE. MAIN OUTCOME MEASURES: The MSE and 1j electrodes were compared in their angular depth of insertion and pre to postoperative change in hearing thresholds. Hearing preservation was analyzed as a function of angular depth of insertion. Secondary outcome measures included operative time, incidence of abnormal intraoperative impedance and telemetry values, and incidence of postsurgical complications. RESULTS: Depth of insertion was similar for both electrodes, but was more consistent for the MSE array and more variable for the 1j array. Patients with MSE electrodes had better hearing preservation. Thresholds shifts at four audiometric frequencies ranging from 250 to 2000 Hz were 10, 7, 2, and 6 dB smaller for the MSE electrode than for the 1j (p < 0.05). Hearing preservation at low frequencies was worse with deeper insertion, regardless of array. Secondary outcome measures were similar for both electrodes. CONCLUSION: The MSE electrode resulted in more consistent insertion depth and somewhat better hearing preservation than the 1j electrode. Differences in other surgical outcome measures were small or unlikely to have a meaningful effect.
PMCID:5104204
PMID: 27755356
ISSN: 1537-4505
CID: 2279922
A physiological and behavioral system for hearing restoration with cochlear implants
King, Julia; Shehu, Ina; Roland, J Thomas Jr; Svirsky, Mario A; Froemke, Robert C
Cochlear implants are neuroprosthetic devices that provide hearing to deaf patients, although outcomes are highly variable even with prolonged training and use. The central auditory system must process cochlear implant signals, but it is unclear how neural circuits adapt - or fail to adapt - to such inputs. Understanding these mechanisms is required for development of next-generation neuroprosthetics that interface with existing neural circuits and enable synaptic plasticity to improve perceptual outcomes. Here we describe a new system for cochlear implant insertion, stimulation, and behavioral training in rats. Animals were first ensured to have significant hearing loss via physiological and behavioral criteria. We developed a surgical approach for multi-channel (2-channel or 8-channel) array insertion, comparable to implantation procedures and depth in humans. Peripheral and cortical responses to stimulation were used to objectively program the implant. Animals fitted with implants learned to use them for an auditory-dependent task that assesses frequency detection and recognition, in a background of environmentally- and self-generated noise, and ceased responding appropriately to sounds when the implant was temporarily inactivated. This physiologically-calibrated and behaviorally-validated system provides a powerful opportunity to study the neural basis of neuroprosthetic device use and plasticity.
PMCID:4995281
PMID: 27281743
ISSN: 1522-1598
CID: 2136552
Functional Segregation of Cortical Regions Underlying Speech Timing and Articulation
Long, Michael A; Katlowitz, Kalman A; Svirsky, Mario A; Clary, Rachel C; Byun, Tara McAllister; Majaj, Najib; Oya, Hiroyuki; Howard, Matthew A 3rd; Greenlee, Jeremy D W
Spoken language is a central part of our everyday lives, but the precise roles that individual cortical regions play in the production of speech are often poorly understood. To address this issue, we focally lowered the temperature of distinct cortical regions in awake neurosurgical patients, and we relate this perturbation to changes in produced speech sequences. Using this method, we confirm that speech is highly lateralized, with the vast majority of behavioral effects seen on the left hemisphere. We then use this approach to demonstrate a clear functional dissociation between nearby cortical speech sites. Focal cooling of pars triangularis/pars opercularis (Broca's region) and the ventral portion of the precentral gyrus (speech motor cortex) resulted in the manipulation of speech timing and articulation, respectively. Our results support a class of models that have proposed distinct processing centers underlying motor sequencing and execution for speech.
PMCID:4833207
PMID: 26924439
ISSN: 1097-4199
CID: 2009232
Information Theoretic Evaluation of a Noiseband-Based Cochlear Implant Simulator
Aguiar, Daniel E; Taylor, N Ellen; Li, Jing; Gazanfari, Daniel K; Talavage, Thomas M; Laflen, J Brandon; Neuberger, Heidi; Svirsky, Mario A
Noise-band vocoders are often used to simulate the signal processing algorithms used in cochlear implants (CIs), producing acoustic stimuli that may be presented to normal hearing (NH) subjects. Such evaluations may obviate the heterogeneity of CI user populations, achieving greater experimental control than when testing on CI subjects. However, it remains an open question whether advancements in algorithms developed on NH subjects using a simulator will necessarily improve performance in CI users. This study assessed the similarity in vowel identification of CI subjects and NH subjects using an 8-channel noise-band vocoder simulator configured to match input and output frequencies or to mimic output after a basalward shift of input frequencies. Under each stimulus condition, NH subjects performed the task both with and without feedback/training. Similarity of NH subjects to CI users was evaluated using correct identification rates and information theoretic approaches. Feedback/training produced higher rates of correct identification, as expected, but also resulted in error patterns that were closer to those of the CI users. Further evaluation remains necessary to determine how patterns of confusion at the token level are affected by the various parameters in CI simulators, providing insight into how a true CI simulation may be developed to facilitate more rapid prototyping and testing of novel CI signal processing and electrical stimulation strategies.
PMCID:4798893
PMID: 26409068
ISSN: 1878-5891
CID: 1787122
The neural encoding of formant frequencies contributing to vowel identification in normal-hearing listeners
Won, Jong Ho; Tremblay, Kelly; Clinard, Christopher G; Wright, Richard A; Sagi, Elad; Svirsky, Mario
Even though speech signals trigger coding in the cochlea to convey speech information to the central auditory structures, little is known about the neural mechanisms involved in such processes. The purpose of this study was to understand the encoding of formant cues and how it relates to vowel recognition in listeners. Neural representations of formants may differ across listeners; however, it was hypothesized that neural patterns could still predict vowel recognition. To test the hypothesis, the frequency-following response (FFR) and vowel recognition were obtained from 38 normal-hearing listeners using four different vowels, allowing direct comparisons between behavioral and neural data in the same individuals. FFR was employed because it provides an objective and physiological measure of neural activity that can reflect formant encoding. A mathematical model was used to describe vowel confusion patterns based on the neural responses to vowel formant cues. The major findings were (1) there were large variations in the accuracy of vowel formant encoding across listeners as indexed by the FFR, (2) these variations were systematically related to vowel recognition performance, and (3) the mathematical model of vowel identification was successful in predicting good vs poor vowel identification performers based exclusively on physiological data.
PMCID:4706540
PMID: 26826999
ISSN: 1520-8524
CID: 1931872