Searched for: in-biosketch:yes
person:kannak03
A Review of Environmental Occurrence, Fate, Exposure, and Toxicity of Benzothiazoles
Liao, Chunyang; Kim, Un-Jung; Kannan, Kurunthachalam
Benzothiazole and its derivatives (BTs) are high production volume chemicals that have been used for several decades in a large number of industrial and consumer products, including vulcanization accelerators, corrosion inhibitors, fungicides, herbicides, algicides, and ultraviolet (UV) light stabilizers. Several benzothiazole derivatives are used commercially, and widespread use of these chemicals has led to ubiquitous occurrence in diverse environmental compartments. BTs have been reported to be dermal sensitizers, respiratory tract irritants, endocrine disruptors, carcinogens, and genotoxicants. This article reviews occurrence and fate of a select group of BTs in the environment, as well as human exposure and toxicity. BTs have frequently been found in various environmental matrices at concentrations ranging from sub-ng/L (surface water) to several tens of μg/g (indoor dust). The use of BTs in a number of consumer products, especially in rubber products, has resulted in widespread human exposure. BTs undergo chemical, biological, and photolytic degradation in the environment, creating several transformation products. Of these, 2-thiocyanomethylthio-benzothiazole (2-SCNMeS-BTH) has been shown to be the most toxic. Epidemiological studies have shown excess risks of cancers, including bladder cancer, lung cancer, and leukemia, among rubber factory workers, particularly those exposed to 2-mercapto-benzothiazole (2-SH-BTH). Human exposure to BTs continues to be a concern.
PMID: 29578695
ISSN: 1520-5851
CID: 4287092
Spatial distribution of bisphenol S in surface water and human serum from Yangtze River watershed, China: Implications for exposure through drinking water
Wan, Yanjian; Xia, Wei; Yang, Shunyi; Pan, Xinyun; He, Zhenyu; Kannan, Kurunthachalam
Bisphenol S (BPS) is an emerging environmental contaminant. The occurrence of this compound in humans and the environment is not well described. In this study, 120 surface water samples and 240 human serum samples were collected along the Yangtze River in 2015 for the determination of the occurrence of BPS. Surface water and human serum samples were extracted by solid phase extraction and liquid-liquid extraction, respectively, and analyzed by ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). BPS was detected in all river water samples at concentrations that ranged from 0.18 to 14.9 ng/L (median: 0.98 ng/L), with higher concentrations in spring than summer. The median estimated daily intake (EDI) of BPS through water ingestion by infants in spring and summer was 0.12 and 0.06 ng/kg body weight (bw)/day, respectively. BPS was detected in human serum with the highest concentrations in samples from Nanjing (median: 0.65 ng/mL, maximum: 169 ng/mL) among the four cities studied. No significant gender related difference in BPS concentrations was observed in human sera, while higher concentrations were found in younger individuals than elderly. The EDI of BPS calculated based on serum concentrations of adults in Nanjing was 22.8 ng/kg bw/day. Ingestion of water accounted for <1% of the total BPS intake by the Chinese population. This is the first report of the occurrence of BPS in water from the Yangtze River and human serum from several cities located along this river in China.
PMID: 29459349
ISSN: 1879-1298
CID: 4287032
An optimized method for the analysis of cyclic and linear siloxanes and their distribution in surface and core sediments from industrialized bays in Korea
Lee, Sang-Yoon; Lee, Sunggyu; Choi, Minkyu; Kannan, Kurunthachalam; Moon, Hyo-Bang
Environmental contamination by siloxanes is a matter of concern due to their widespread consumption in personal care as well as industrial products and potential toxicity. Nevertheless, methods for simultaneous determination of cyclic and linear siloxanes in sediment are lacking. In this study, we developed an optimized analytical method to determine cyclic and linear siloxanes based on gas chromatography coupled to tandem mass spectrometry (GC-MS/MS). This method was applied to determine concentrations of 19 siloxane compounds in surface and core sediments from industrialized bays in Korea to assess contamination status, spatial distribution, and historical trends. Total concentrations of siloxanes ranged from 15.0 to 11730 (mean: 712) ng/g dry weight, which were similar to or higher than those reported in other countries. The highest concentrations of siloxanes were found in rivers/streams that discharge into coastal waters and bays close to industrial complexes, indicating that industrial activities are major sources of siloxane contamination. Cyclic siloxanes such as D5 and D6 were predominant in surface and core sediments. A significant correlation existed between the concentrations of cyclic and linear siloxanes, suggesting similar sources in the marine coastal environment. The historical record of cyclic siloxanes in core sediments revealed a clear increasing trend since the 1970s. This finding is consistent with the history of local industrialization and global production of siloxanes. This is the first study of historical trends in siloxanes in the coastal environment.
PMID: 29414330
ISSN: 1873-6424
CID: 4287002
Endocrine disrupting chemicals in seminal plasma and couple fecundity
Buck Louis, Germaine M; Smarr, Melissa M; Sun, Liping; Chen, Zhen; Honda, Masato; Wang, Wei; Karthikraj, Rajendiran; Weck, Jennifer; Kannan, Kurunthachalam
Growing evidence supports the importance of men's exposure to non-persistent endocrine disruptors (EDCs) and couple fecundability, as measured by time-to-pregnancy (TTP). This evolving literature contrasts with the largely equivocal findings reported for women's exposures and fecundity. While most evidence relies upon urinary concentrations, quantification of EDCs in seminal plasma may be more informative about potential toxicity arising within the testes. We analyzed 5 chemical classes of non-persistent EDCs in seminal plasma for 339 male partners of couples who were recruited prior to conception and who were followed daily until pregnant or after one year of trying. Benzophenones, bisphenols, parabens, and phthalate metabolites and phthalate diesters were measured using high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) except for phthalate diesters, which were analyzed using gas chromatography-mass spectrometry. Cox regression with discrete-time was used to estimate fecundability odds ratios (FORs) and 95% confidence intervals (CIs) for each chemical to estimate the probability of pregnancy. While most EDCs were detected in seminal plasma, concentrations were lower than urinary concentrations previously analyzed for the cohort. None of the EDCs were significantly associated with fecundability even after covariate adjustment, though benzophenones consistently yielded FORs <1.0 (ranging from 0.72 to 0.91) in couple-adjusted models suggestive of diminished fecundity (longer TTP). The findings underscore that a range of EDCs can be quantified in seminal plasma, but the lower concentrations may require a large cohort for assessing couple fecundability, as well as the need to consider other fecundity outcomes such as semen quality.
PMCID:5878734
PMID: 29426029
ISSN: 1096-0953
CID: 4287022
Gestational bisphenol S impairs placental endocrine function and the fusogenic trophoblast signaling pathway
Gingrich, Jeremy; Pu, Yong; Roberts, Jennifer; Karthikraj, Rajendiran; Kannan, Kurunthachalam; Ehrhardt, Richard; Veiga-Lopez, Almudena
Exposure to bisphenolic chemicals during pregnancy occurs in > 90% of pregnancies. Bisphenolic compounds can cross the placental barrier reaching fetal circulation. However, the effects of emerging bisphenolic compounds, such as bisphenol S (BPS), on placental function remain untested. The aim was to determine if bisphenol A (BPA) or BPS, at an environmentally relevant dose, impairs placental function. Pregnant sheep were randomly distributed into three treatment groups (n = 7-8/group): control, BPA, and BPS. All animals received daily injections of corn oil (control), BPA, or BPS (0.5 mg/kg; s.c.; internal fetal doses were ~ 2.6 ng/mL unconjugated BPA and ~ 7.7 ng/mL of BPS) from gestational day 30-100. After a 20-day washout period, placentas were weighed and placentomes collected. Placental endocrine function was assessed on biweekly maternal blood samples. Gestational exposure to BPS, but not BPA, reduced maternal circulating pregnancy-associated glycoproteins without change in placental weight or placental stereology. BPS-exposed placentas had 50% lower e-cadherin protein expression, ~ 20% fewer binucleate cells, and ~ threefold higher glial cell missing-1 protein expression. BPA placentas were not affected highlighting the intrinsic differences among bisphenolic chemicals. This is the first study to demonstrate that gestational BPS can result in placental endocrine dysfunction and points to a dysregulation in the fusogenic trophoblast signaling pathway.
PMCID:6101248
PMID: 29550860
ISSN: 1432-0738
CID: 4287072
Male urinary biomarkers of antimicrobial exposure and bi-directional associations with semen quality parameters
Smarr, Melissa M; Honda, Masato; Kannan, Kurunthachalam; Chen, Zhen; Kim, Sungduk; Louis, Germaine M Buck
Antimicrobials including parabens, triclosan, and triclocarban have endocrine disrupting properties. Among 501 male partners of couples planning to become pregnant, preconception urinary biomarkers of parabens, triclosan and triclocarban exposure were quantified in spot urine samples. Men also provided two fresh semen samples collected approximately one month to undergo 24-h semen quality analysis. Linear mixed-effects models, adjusted for creatinine, race, age and body mass index, were utilized to assess the relationship between log transformed chemical concentrations rescaled by their standard deviations and semen parameters. Methyl, ethyl and butyl parabens, were associated with diminished sperm count and several sperm motility parameters. Hydroxylated paraben metabolites and triclosan were significantly positively associated with select semen quality parameters. Overall, our findings suggest that specific urinary parabens found in consumer goods (methyl, ethyl and butyl parabens) may adversely impact sperm quality parameters among reproductive-age male partners of couples trying for pregnancy.
PMCID:5878147
PMID: 29474822
ISSN: 1873-1708
CID: 4287042
Resin-based dental sealants as a source of human exposure to bisphenol analogues, bisphenol A diglycidyl ether, and its derivatives
Xue, Jingchuan; Kannan, Pranav; Kumosani, Taha A; Al-Malki, Abdulrahman L; Kannan, Kurunthachalam
Although studies have examined leaching of bisphenol A (BPA) from dental sealants into saliva, occurrence of BPA, bisphenol A diglycidyl ether (BADGE), and their derivatives in dental sealants themselves has not been investigated. In this study, concentrations of eight bisphenol analogues (BPs), BADGE and its derivatives (BADGEs), including BADGE‧H2O, BADGE‧HCl, BADGE‧2H2O, BADGE‧2HCl, and BADGE‧H2O‧HCl, were determined in 70 dental sealants collected from the U.S. market. Of the 70 dental sealants analyzed, 65 contained at least one of the target chemicals measured. BADGE‧2H2O was the most abundant compound, found at concentrations of up to 1780µg/g. The geometric mean (GM) concentration of total BADGEs was 47.8µg/g, which was two to three orders of magnitude higher than that of total BPs (GM: 539ng/g). BPA was found in 46% of the sealants and BADGEs was found in 87% of the sealants analyzed. Majority of the dental sealants analyzed in this study were manufactured in the United States and Korea; no significant differences were observed in the concentrations of BPs and BADGEs between the two countries. An exposure assessment was made based on the concentrations of BPs and BADGEs measured in sealants and their application rates in dentistry. The worst-case exposure scenario with the highest measured concentration of total BPs and BADGEs and application on 8 teeth at 8mg each yielded an estimated daily intake (EDI) of 1670 and 5850ng/kg·bw/day for adults and children, respectively. Although the EDI is below the specific migration limit set by the European Food Safety Authority, dental sealants are a source of exposure to BPs and BADGEs, especially in children.
PMID: 29276977
ISSN: 1096-0953
CID: 4286982
Parabens and Their Metabolites in Pet Food and Urine from New York State, United States
Karthikraj, Rajendiran; Borkar, Sonali; Lee, Sunmi; Kannan, Kurunthachalam
The exposure of pets, such as dogs and cats, to a wide range of chemicals present in the indoor environment and the concomitant increase in noninfectious diseases in these companion animals are a concern. Nevertheless, little is known about the sources and pathways of exposure to chemicals in pets. In this study, we determined the concentrations of parabens in commercially available cat and dog foods as well as in urine samples from these pets collected from the Albany area of the state of New York in the United States. Parabens, especially methyl paraben (MeP), and their metabolites were found in all pet food and urine samples. The mean concentrations of total parabens (i.e., sum of parabens and their metabolites) in dog ( n = 23) and cat ( n = 35) food were 1350 and 1550 ng/g fresh wt, respectively. Dry food contained higher concentrations of parabens and their metabolites than did wet food, and cat food contained higher concentrations of target chemicals than did dog food. The mean concentrations of total parabens found in dog ( n = 30) and cat ( n = 30) urine were 7230 and 1040 ng/mL, respectively. In both pet food and urine, MeP (among parabens) and 4-hydroxy benzoic acid (4-HB) (among metabolites) were the dominant compounds. The metabolites of parabens accounted for ∼99% (∼99.1% in food and ∼98.9% in urine) of the total concentrations in both food and urine. The profiles of parabens and their metabolites in the urine of dogs and cats varied. In addition to diet, other sources of paraben exposures were found for dogs, whereas, for cats, the majority of exposures was identified as related to diet.
PMID: 29512377
ISSN: 1520-5851
CID: 4287062
Method for the Determination of Iodide in Dried Blood Spots from Newborns by High Performance Liquid Chromatography Tandem Mass Spectrometry
Kim, Un-Jung; Kannan, Kurunthachalam
Dried blood spots (DBS), collected for newborn screening programs in the United States, have been used to screen for congenital metabolic diseases in newborns for over 50 years. DBS provide an easy and inexpensive way to collect and store peripheral blood specimens and present an excellent resource for studies on the assessment of chemical exposures in newborns. In this study, a selective and sensitive method was developed for the analysis of iodide in DBS by high performance liquid chromatography electrospray tandem mass spectrometry. Accuracy, inter- and intraday precision, matrix effects, and detection limits of the method were determined. Further validation of the method was accomplished by concurrent analysis of whole blood and fortified blood spotted on a Whatman 903 filter card. A significant positive correlation was found between measured concentrations of iodide in venous whole blood and the same blood spotted as DBS. The method limit of detection was 0.15 ng/mL iodide. The method was further validated by the analysis of a whole blood sample certified for iodide levels (proficiency testing sample) by spotting on a filter card. Twenty DBS samples collected from newborns in New York State were analyzed to demonstrate the applicability of the method. The measured concentrations of iodide in whole blood of newborns from New York State ranged between <LOD and 16.4 ng/mL. The developed method is applicable for the analysis of DBS collected for epidemiological studies that investigate the importance of iodide on the health of newborns.
PMID: 29412637
ISSN: 1520-6882
CID: 4286992
Per- and Polyfluoroalkyl Substances (PFASs) in Indoor Air and Dust from Homes and Various Microenvironments in China: Implications for Human Exposure
Yao, Yiming; Zhao, Yangyang; Sun, Hongwen; Chang, Shuai; Zhu, Lingyan; Alder, Alfredo C; Kannan, Kurunthachalam
A newly developed solid-phase extraction cartridge composed of mixed sorbents was optimized for collection of both neutral and ionizable per- and polyfluoroalkyl substances (PFASs) in indoor air. Eighty-one indoor air samples and 29 indoor dust samples were collected from rooms of homes and hotels, textile shops, and cinemas in Tianjin, China. Fluorotelomer alcohols (FTOHs) were the predominant PFASs found in air (250-82 300 pg/m3) and hotel dust (24.8-678 ng/g). Polyfluoroalkyl phosphoric acid diesters were found at lower levels of nd-125 pg/m3 in air and 0.32-183 ng/g in dust. Perfluoroalkyl carboxylic acids (PFCAs) were dominant ionizable PFASs in air samples (121-20 600 pg/m3) with C4-C7 PFCAs contributing to 54% ± 17% of the profiles, suggesting an ongoing shift to short-chain PFASs. Long-chain PFCAs (C > 7) were strongly correlated and the intermediate metabolite of FTOHs, fluorotelomer unsaturated carboxylic acids, occurred in all the air samples at concentrations up to 413 pg/m3, suggesting the transformation of precursors such as FTOHs in indoor environment. Daily intake of ∑PFASs via air inhalation and dust ingestion was estimated at 1.04-14.1 ng/kg bw/d and 0.10-8.17 ng/kg bw/d, respectively, demonstrating that inhalation of air with fine suspended particles was a more important direct exposure pathway than dust ingestion for PFASs to adults.
PMID: 29415540
ISSN: 1520-5851
CID: 4287012