Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:llinar01

Total Results:

826


The inositol high-polyphosphate series blocks synaptic transmission by preventing vesicular fusion: a squid giant synapse study

Llinas R; Sugimori M; Lang EJ; Morita M; Fukuda M; Niinobe M; Mikoshiba K
Presynaptic injection of inositol 1,3,4,5-tetraphosphate, inositol 1,3,4,5,6-pentakisphosphate, or inositol 1,2,3,4,5,6-hexakisphosphate--which we denote here the inositol high-polyphosphate series (IHPS)--is shown to block synaptic transmission when injected into the preterminal of the squid giant synapse. This effect is not produced by injection of inositol 1,4,5-trisphosphate. The synaptic block is characterized by a time course in the order of 15-45 min, depending on the injection site in the preterminal fiber; the fastest block occurs when the injection is made at the terminal release site. Presynaptic voltage clamp during transmitter release demonstrates that IHPS block did not modify the presynaptic inward, calcium current. Analysis of synaptic noise at the postsynaptic axon shows that both the evoked and spontaneous transmitter release are blocked by the IHPS. Tetanic stimulation of the presynaptic fiber at frequencies of 100 Hz indicates that block is accompanied by gradual reduction of the postsynaptic response, demonstrating that the block interferes with vesicular fusion rather than with vesicular docking. These results, in combination with the recently demonstrated observation that the IHPS bind the C2B domain in synaptotagmin [Fukada, M., Aruga, J., Niinobe, M., Aimoto, S. & Mikoshiba, K. (1994) J. Biol. Chem. 269, 29206-29211], suggest that IHPS elements are involved in vesicle fusion and exocytosis. In addition, a scheme is proposed in which synaptotagmin triggers transmitter release directly by promoting the fusion of synaptic vesicles with the presynaptic plasmalemma, in agreement with the very rapid nature of transmitter release in chemical synapses
PMCID:45566
PMID: 7809161
ISSN: 0027-8424
CID: 6685

High-resolution measurement of the time course of calcium-concentration microdomains at squid presynaptic terminals

Sugimori M; Lang EJ; Silver RB; Llinas R
Transmitter release is considered to be a secretory event triggered by localized calcium influx which, by binding to a low-affinity Ca2+ site at the presynaptic active zone, initiates vesicular exocytosis (1-7). In previous experiments with aequorin-loaded presynaptic terminals we visualized, upon tetanic presynaptic stimulation, small points of light produced by calcium concentration microdomains of about 300 microM (5). These microdomains had a diameter of about 0.5 microns (5) and covered 5-10% of the total presynaptic membrane with an average density of 8.4 microns2 per 100 microns2, corresponding closely to the size and distribution of the active zones in that junction (6, 7). To understand in more detail the nature of these concentration microdomains, we obtained rapid video images (400/s) after injecting the photoprotein n-aequorin-J into the presynaptic terminals of squid giant synapses. Using that experimental approach, we determined that microdomains evoked by presynaptic spike activation had a duration of about 800 microseconds. Spontaneous quantum emission domains (QEDs) observed at about the same locations as the microdomains were smaller in amplitude, shorter in duration, and less frequent. These results illustrate the time course of the calcium concentration profiles responsible for transmitter release. Their extremely short duration compares closely with that of calcium current flow during a presynaptic action potential and indicates that, as theorized in the past (6-8), intracellular calcium concentration at the active zone remains high only for the duration of transmembrane calcium flow
PMID: 7841233
ISSN: 0006-3185
CID: 6759

Time-resolved imaging of Ca(2+)-dependent aequorin luminescence of microdomains and QEDs in synaptic preterminals

Silver RB; Sugimori M; Lang EJ; Llinas R
Localized elevation of intracellular free calcium [Ca2+]i concentration serves as the trigger for a wide variety of physiological processes, e.g., neurotransmitter release at most chemical synapses (1-3). The details of the mechanisms that regulate these processes are still unresolved (3-6), but they must involve precise temporal sequences of molecular events initiated by a transient localized elevation of Ca2+ concentration (i.e., a Ca2+ microdomain [3,7-15]). A microdomain is defined as an autonomous compartment of minimal spatio-temporal volume within which a signaled process can occur (8, 10, 12). A quantum emission domain (QED) is a quantal signal element (3, 16, 17). The concept of a QED was first applied to Ca2+ signaling at the synaptic preterminal (3, 4) and for large-diameter mitotic cells (16, 17). The concept of Ca2+ microdomains was tested by labeling preterminals of squid giant synapses with low-sensitivity aequorin (a photoprotein that emits a photon upon binding Ca2+ [18, 19]). That work confirmed earlier modeling efforts (10, 16) and showed that, upon depolarization, the [Ca2+]i profile reaches 200-300 microM within the microdomains, and that these [Ca2+]i profiles are composed of groups of short-lived 0.5 microns diameter QEDs. In those records, obtained with 2:1 interlacing devices operating at the RS-170 standard, QEDs appeared as striped dots or chevrons rather than as solid dots, indicating that a QED lasted less than 16.6 ms (one video field), and thus establishing the need for higher sampling rates to better characterize the QED.(ABSTRACT TRUNCATED AT 250 WORDS)
PMID: 7841232
ISSN: 0006-3185
CID: 9895

Human oscillatory brain activity near 40 Hz coexists with cognitive temporal binding

Joliot M; Ribary U; Llinas R
Spontaneous oscillatory electrical activity at a frequency near 40 Hz in the human brain and its reset by sensory stimulation have been proposed to be related to cognitive processing and to the temporal binding of sensory stimuli. These experiments were designed to test this hypothesis and to determine specifically whether the minimal interval required to identify separate auditory stimuli correlates with the reset of the 40-Hz magnetic signal. Auditory clicks were presented at varying times, while magnetic activity was recorded from awake human subjects. Experimental and modeling results indicate a stimulus-interval-dependent response with a critical interval of 12-15 ms. At shorter intervals only one 40-Hz response, to the first stimulus, was observed. With longer intervals, a second 40-Hz wave abruptly appeared, which coincided with the subject's perception of a second distinct auditory stimulus. These results indicate that oscillatory activity near 40 Hz represents a neurophysiological correlate to the temporal processing of auditory stimuli. It also supports the view that 40-Hz activity not only relates to primary sensory processing, but also could reflect the temporal binding underlying cognition
PMCID:45309
PMID: 7972135
ISSN: 0027-8424
CID: 7990

Electrophysiology of globus pallidus neurons in vitro

Nambu A; Llinas R
1. We investigated the electrical properties of globus pallidus neurons intracellularly using brain slices from adult guinea pigs. Three types of neurons were identified according to their intrinsic electrophysiological properties. 2. Type I neurons (59%) were silent at the resting membrane level (-65 +/- 10 mV, mean +/- SD) and generated a burst of spikes, with strong accommodation, to depolarizing current injection. Calcium-dependent low-frequency (1-8 Hz) membrane oscillations were often elicited by membrane depolarization (-53 +/- 8 mV). A low-threshold calcium conductance and an A-current were also identified. The mean input resistance of this neuronal type was 70 +/- 22 M omega. 3. Type II neurons (37%) fired spontaneously at the resting membrane level (-59 +/- 9 mV). Their repetitive firing (< or = 200 Hz) was very sensitive to the amplitude of injected current and showed weak accommodation. Sodium-dependent high-frequency (20-100 Hz) subthreshold membrane oscillations were often elicited by membrane depolarization. This neuronal type demonstrated a low-threshold calcium spike and had the highest input resistance (134 +/- 62 M omega) of the three neuron types. 4. Type III neurons (4%) did not fire spontaneously at the resting membrane level (-73 +/- 5 mV). Their action potentials were characterized by a long duration (2.3 +/- 0.6 ms). Repetitive firing elicited by depolarizing current injection showed weak or no accommodation. This neuronal type had an A-current and showed the lowest input resistance (52 +/- 35 M omega) of the three neuron types. 5. Stimulation of the caudoputamen evoked inhibitory postsynaptic potentials (IPSPs) in Type I and II neurons. In Type II neurons the IPSPs were usually followed by rebound firing. Excitatory postsynaptic potentials and antidromic responses were also elicited in some Type I and II neurons. The estimated conduction velocity of the striopallidal projection was < 1 m/s (Type I neurons, 0.49 +/- 0.37 m/s; Type II neurons, 0.33 +/- 0.13 m/s)
PMID: 7807199
ISSN: 0022-3077
CID: 6702

Non-lamellar propagation of entorhinal influences in the hippocampal formation: multiple electrode recordings in the isolated guinea pig brain in vitro

Pare D; Llinas R
Experiments were carried out to study the spatiotemporal organization of medial entorhinal inputs to the hippocampal system. They were performed in the isolated guinea pig brain in vitro preparation as it provides easy access to the medial entorhinal cortex (mEC) which is difficult to reach in vivo. Multiple simultaneous field potential recordings along the septotemporal extent of the dentate granular layer revealed that the mEC projection to the dentate gyrus (DG) is organized topographically. Thus, stimulation of the caudal regions of the mEC elicited population spikes (PSs) in the septal pole of the DG while successively more rostral stimulation sites activated progressively more temporal sectors of the DG. However, threshold mEC stimuli never elicited PSs over more than one-third of the DG. In the CA1 pyramidal layer, only trisynaptic PSs were evoked by the mEC stimulation (latency > 20 ms at 30 degrees C). However, PSs were widely distributed in the transverse and longitudinal axes of the hippocampus and, irrespective of the mEC stimulation site, the latency of CA1 PSs gradually increased from the CA3/CA1 border toward the subiculum. By contrast, in the longitudinal axis, each segment of the CA1 region responded at a shorter latency to stimulation of a given rostrocaudal level of the mEC. Septal CA1 levels responded at shorter latencies to caudal mEC stimulation sites while more temporal CA1 levels responded at shorter latencies to rostral mEC stimulation sites. When stimulated at threshold stimulation intensity, the initial CA1 response propagated to the rest of the CA1 field with a conduction velocity of 0.5-0.9 m/s.(ABSTRACT TRUNCATED AT 250 WORDS)
PMID: 7874232
ISSN: 1050-9631
CID: 6710

Transmission at the squid giant synapse was blocked by tetanus toxin by affecting synaptobrevin, a vesicle-bound protein

Llinas R; Sugimori M; Chu D; Morita M; Blasi J; Herreros J; Jahn R; Marsal J
1. The effect of whole tetanus toxin (TeTX) and of its light chain (TeTX L-chain) on transmitter release was determined by presynaptic pressure-injection in the squid giant synapse. 2. The results indicate that whole TeTX does not modify transmission while the L-chain blocks transmission within 20-30 min. This block does not involve changes in the sodium or potassium conductances responsible for spike generation or the voltage-dependent presynaptic calcium current responsible for transmitter release. 3. Western blotting of protein fractions from the squid optic lobe demonstrated the presence of a protein which reacted with specific antibodies against mammalian synaptobrevin, a vesicular protein. In addition, this protein was enzymatically cleaved by the L-chain component of the toxin in a similar fashion to its mammalian counterpart. 4. These results demonstrate that TeTX L-chain toxin acts directly on a squid synaptobrevin and prevents synaptic release probably by interfering with the docking-fusion synaptic vesicles at the active zone
PMCID:1155580
PMID: 8071879
ISSN: 0022-3751
CID: 8343

Serotonergic and cholinergic inhibition of mesopontine cholinergic neurons controlling REM sleep: an in vitro electrophysiological study

Leonard CS; Llinas R
Intracellular recordings were obtained from neurons of the laterodorsal tegmental and pedunculopontine tegmental nuclei in a brain-slice preparation. The action of exogenously applied 5-hydroxytryptamine and acetylcholine was studied on NADPH-diaphorase-labeled cells which contain nitric oxide synthase and are presumed to be cholinergic. Our results indicated that these cells were hyperpolarized by both 5-hydroxytryptamine and acetylcholine; the ionic mechanism of this inhibition was investigated using current and voltage clamp methods. Cells voltage-clamped at resting membrane potential exhibited a net outward current and an increased membrane conductance during 5-hydroxytryptamine and acetylcholine mediated inhibition. The membrane hyperpolarization and outward current generated by this paradigm reversed near the expected K equilibrium potential and was blocked by low concentrations of extracellular Ba. The 5-hydroxytryptamine- and acetylcholine-dependent currents showed inward rectification and the reversal potential shifted in the depolarizing direction by about 15 mV for a doubling of extracellular K, indicating that both 5-hydroxytryptamine and acetylcholine activate inwardly rectifying, potassium-selective conductances. The 5-hydroxytryptamine-evoked hyperpolarization was antagonized by spiperone and mimicked by (+)8-hydroxy-2-(Di-N-propylamino)-tetralin suggesting the presence of a 5-hydroxytryptamine1A receptor while the acetylcholine-evoked hyperpolarization was blocked by atropine and only high concentrations of pirenzepine, suggesting a muscarinic M2 receptor. The outward currents evoked by 5-hydroxytryptamine and acetylcholine were not additive, suggesting that both receptors are coupled to an overlapping pool of K channels as has been observed in several systems in which receptors are coupled to effectors by G-proteins. These results indicate that the dominant actions of 5-hydroxytryptamine and acetylcholine relate to the inhibition of mesopontine cholinergic neurons via activation of an overlapping pool of inwardly rectifying K channels. Cholinergic neurons of these nuclei are thought to play an instrumental role in the induction and maintenance of rapid eye movement sleep. It has been previously hypothesized that acetylcholine would be excitatory and that 5-hydroxytryptamine would be inhibitory to these cells in the context of rapid eye movement sleep. [McCarley R. and Massaquoi S. (1986) Am. J. Physiol. 251, R1011-R1029; McCarley R. W. et al. (1975) Science 189, 58-60]. Our results are consistent with the proposed inhibitory action of 5-hydroxytryptamine but indicate recurrent input to cholinergic neurons would be inhibitory. Accordingly, models of the neural substrate underlying rapid eye movement sleep production need to be changed to reflect this inhibitory action of acetylcholine on cholinergic neurons
PMID: 8008195
ISSN: 0306-4522
CID: 9896

The persistent NA+ current in cerebellar Purkinje cells has a single channel conductance distinct from the inactivating current [Meeting Abstract]

Sugimori, M.; Kay, A. R.; Llinas, R.
BIOSIS:PREV199497483411
ISSN: 0190-5295
CID: 92351

Localization of calcium concentration microdomains at the active zone in the squid giant synapse

Llinas RR; Sugimori M; Silver RB
PMID: 7848707
ISSN: 1040-7952
CID: 6686