Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:llinar01

Total Results:

826


Identification of a critical period for motor development in neonatal rats

Walton KD; Lieberman D; Llinas A; Begin M; Llinas RR
Manipulation of the developing nervous system has provided valuable insights into nervous system function. One important concept to arise from this type of study has been the identification of specific 'critical periods' for the development of various functions. A critical period has been most clearly shown for the visual system where monocular eye closure for a few weeks led to functionally significant changes in visually guided behaviors and the connectivity of the visual cortex. Critical periods have also been defined for other sensory systems. Although studies of the effect of manipulating sensory systems during development are sometimes difficult to interpret (e.g. Ref. 7), this difficulty is compounded in the case of the motor system. Problems arise because manipulations of the postnatal motor system are difficult to implement and usually require invasive procedures such as tenotomy, neurotomy, and nerve crush (for review, see Ref. 17). We have approached the problem of manipulating the motor environment by adapting a paradigm widely used to study the experimental effects of simulated weightlessness in adult rats: namely, tail suspension. This method has several advantages for manipulating the motor system: (i) because it is noninvasive, it is less discomforting than neurotomy, tenotomy or nerve crush; (ii) it does not immobilize the animals, they move about the cage and extend and flex their hindlimbs; and (iii) it specifically examines the importance of load-bearing on the development of antigravity muscles and their neuronal circuits.(ABSTRACT TRUNCATED AT 250 WORDS)
PMID: 1488121
ISSN: 0306-4522
CID: 8288

P-type calcium channels in the somata and dendrites of adult cerebellar Purkinje cells

Usowicz MM; Sugimori M; Cherksey B; Llinas R
The pharmacological and single-channel properties of Ca2+ channels were studied in the somata and dendrites of adult cerebellar Purkinje cells. The Ca2+ channels were exclusively of the high threshold type: low threshold Ca2+ channels were not found. These high threshold channels were not blocked by omega-conotoxin GVIA and were inhibited rather than activated by BAY K 8644. They were therefore pharmacologically distinct from high threshold N- and L-type channels. Funnel web spider toxin was an effective blocker. The channels opened to conductance levels of 9, 14, and 19 pS (in 110 mM Ba2+). These slope conductances were in the range of those reported for N- and L-type channels. Our results are in agreement with previous reports suggesting that Ca2+ channels in Purkinje cells can be classified as P-type channels according to their pharmacology. The results also suggest that distinctions among Ca2+ channel types based on the single-channel conductance are not definitive
PMID: 1281419
ISSN: 0896-6273
CID: 8201

FMRFamide-related peptides potentiate transmission at the squid giant synapse

Cottrell GA; Lin JW; Llinas R; Price DA; Sugimori M; Stanley EF
The stellate ganglion of the squid Loligo pealli contains the neuropeptides Phe-Met-Arg-Phe-NH2 (FMRFamide), Phe-Leu-Arg-Phe-NH2 (FLRFamide) and at least one N-terminally extended FMRFamide-related peptide that is yet to be fully characterized. Both local application and arterial perfusion of FLRFamide potentiate transmission at the giant synapse. The N-terminally related peptide Ser-Asp-Pro-Phe-Leu-Arg-Phe-NH2 (SDPFLRFamide) produced a similar effect. The threshold for both the tetra- and the hepta-peptides was less than 10 microM. Potentiation could be detected as an increase in rate of rise of the EPSPs, as an increase in amplitude of the EPSP in the absence of spikes, or under voltage clamp as an increase in the EPSC. The effect was most pronounced when the synapse was fatigued by high frequency stimulation. Another molluscan peptide, eledoisin and also leucine enkephalin were without effect. In the absence of any detectable effects of FLRFamide on the resting membrane potential of either pre- or postsynaptic terminals or on the presynaptic spike, it is suggested that the peptide influences transmitter mobilization. However, the peptide could also exert small changes in preterminal calcium currents, which so far we have been unable to detect
PMID: 1362646
ISSN: 0958-0670
CID: 9901

USE OF MAGNETOENCEPHALOGRAPHY AND MR IMAGING TO LOCALIZE NORMAL AND PATHOLOGICAL HUMAN BRAIN-FUNCTION [Meeting Abstract]

RIBARY, U; MOGILNER, A; JOLIOT, M; VOLKMANN, J; RUSINEK, H; LLINAS, RR
ISI:A1992JW37700576
ISSN: 0033-8419
CID: 105129

Electrophysiology of the mammillary complex in vitro. II. Medial mammillary neurons

Alonso A; Llinas RR
1. The electrophysiological properties of guinea pig medial mammillary body (MMB) neurons were studied using an in vitro slice preparation. 2. The neurons (n = 80) had an average resting potential of -57 +/- 5.5 (SD) mV, an input resistance of 176 +/- 83 M omega, and a spike amplitude of 58 +/- 15.7 mV. Most of the neurons were silent at rest (n = 52), but some fired spontaneous single spikes (n = 16) or spike bursts (n = 14). 3. The main electrophysiological characteristic of MMB neurons was the ability to generate Ca(2+)-dependent regenerative events, which resulted in very robust burst responses. However, this regenerative event was not the same for all neurons, ranging from typical low-threshold Ca2+ spikes (LTSs) to intermediate-threshold plateau potentials (ITPs). 4. The ITPs were distinct from the LTSs in that they lasted > or = 100 ms and were not inactivated at membrane potentials at or positive to -55 mV. 5. Some cells with a prominent ITP and no LTS (n = 36) displayed repetitive, usually rhythmic, bursting (n = 14). This ITP could be powerful enough to maintain rhythmic membrane potential oscillations after pharmacological block of Na+ conductances. 6. A group of 32 MMB neurons displayed complex bursting that was generated by activation of both LTSs and ITPs. This was established on the basis of their distinct time- and voltage-dependent characteristics. In a group of neurons (n = 14), the burst responses were exclusively generated by an LTS; however, a Ca(2+)-dependent plateau potential contributed to the generation of rebound-triggered oscillatory firing. 7. In addition to the Ca(2+)-dependent LTS and/or ITP, MMB neurons always displayed high-threshold Ca2+ spikes after reduction of K+ conductances with tetraethylammonium. 8. MMB neurons display one of the richer varieties of voltage-dependent Ca2+ conductances so far encountered in mammalian CNS. We propose that the very prominent endogenous bursting and oscillatory properties of MB neurons allow this nuclear complex to function as an oscillatory relay for the transmission of low-frequency rhythmic activities throughout the limbic circuit
PMID: 1432086
ISSN: 0022-3077
CID: 9902

Electrophysiology of the mammillary complex in vitro. I. Tuberomammillary and lateral mammillary neurons

Llinas RR; Alonso A
1. The electrophysiological properties of the tuberomammillary and lateral mammillary neurons in the guinea pig mammillary body were studied using an in vitro brain slice preparation. 2. Tuberomammillary (n = 79) neurons were recorded mainly ventral to the lateral mammillary body as well as ventromedially to the fornix within the rostral part of the medial mammillary nucleus. Intracellular staining with horseradish peroxidase (n = 9) and Lucifer yellow (n = 3) revealed that these cells have several thick, long, spiny dendrites emerging from large (20-35 microns) fusiform somata. 3. Most tuberomammillary neurons (66%) fired spontaneously at a relatively low frequency (0.5-10 Hz) at the resting membrane potential. The action potentials were broad (2.3 ms) with a prominent Ca(2+)-dependent shoulder on the falling phase. Deep (17.8 mV), long-lasting spike afterhyperpolarizations were largely Ca(2+)-independent. 4. All tuberomammillary neurons recorded displayed pronounced delayed firing when the cells were activated from a potential negative to the resting level. The cells also displayed a delayed return to the baseline at the break of hyperpolarizing pulses applied from a membrane potential level close to firing threshold. Analysis of the voltage- and time dependence of this delayed rectification suggested the presence of a transient outward current similar to the A current (IA). These were not completely blocked by high concentrations of 4-aminopyridine, whereas the delayed onset of firing was always abolished when voltage-dependent Ca2+ conductances were blocked by superfusion with Cd2+. 5. Tuberomammillary neurons also displayed inward rectification in the hyperpolarizing and, primarily, depolarizing range. Block of voltage-gated Na(+)-dependent conductances with tetrodotoxin (TTX) selectively abolished inward rectification in the depolarizing range, indicating the presence of a persistent low-threshold sodium-dependent conductance (gNap). In fact, persistent TTX-sensitive, plateau potentials were always elicited following Ca2+ block with Cd2+ when K+ currents were reduced by superfusion with tetraethylammonium. 6. The gNap in tuberomammillary neurons may subserve the pacemaker current underlying the spontaneous firing of these cells. The large-amplitude spike afterhyperpolarization of these neurons sets the availability of the transient outward rectifier, which, in conjunction with the pacemaker current, establishes the rate at which membrane potential approaches spike threshold. 7. Repetitive firing elicited by direct depolarization enhanced the spike shoulder of tuberomammillary neurons. Spike trains were followed by a Ca(2+)-dependent, apamine-sensitive, slow afterhyperpolarization. 8. Lateral mammillary neurons were morphologically and electrophysiologically different from tuberomammillary neurons. All lateral mammillary neurons neurons recorded (n = 44) were silent at rest (-60 mV).(ABSTRACT TRUNCATED AT 400 WORDS)
PMID: 1279134
ISSN: 0022-3077
CID: 9903

Distribution and functional significance of the P-type, voltage-dependent Ca2+ channels in the mammalian central nervous system

Llinas R; Sugimori M; Hillman DE; Cherksey B
In addition to the three types of voltage-dependent calcium channels presently recognized in the CNS, the L-, the T- and the N-types, a fourth distinct type known as the P-type channel has recently been described. This channel, initially recognized in Purkinje cells (and thus the name), is not blocked by dihydropyridines or by omega-conotoxin (GVIA), but is blocked by native funnel-web spider venom and by a polyamine (FTX) extracted from such venom. In addition, a synthetic polyamine (sFTX) has been produced that also specifically blocks P-channels in brain slices and at the neuromuscular junction, and blocks presynaptic Ca2+ currents in other vertebrate and invertebrate forms, as well as channels expressed in Xenopus oocytes following CNS mRNA injections. Using sFTX to form an affinity gel, a protein was isolated and reconstituted into lipid bilayers where it manifests single-channel properties that are electrophysiologically and pharmacologically similar to those of the native P-channels. Rabbits immunized with the isolated protein produced a polyclonal antibody that gave a positive western blot with the purified P-channel protein and generated a reaction product at specific sites in the CNS that agree with the physiological distribution of P-channel activity
PMID: 1382335
ISSN: 0166-2236
CID: 8465

Cost of brain disorders [Comment]

Bloom FE; Cowey A; Faull RL; Grahame-Smith DG; Gray JA; Hokfelt T; Iversen LL; Llinas RR; Marsden CD; Purpura DP; et al
PMID: 1630482
ISSN: 0028-0836
CID: 9904

Afferent projections to the mammillary complex of the rat, with special reference to those from surrounding hypothalamic regions

Gonzalo-Ruiz A; Alonso A; Sanz JM; Llinas RR
To better understand the functional organization of the mammillary nuclei, we investigated the afferents to this nuclear complex in the rat with iontophoretically injected wheat germ agglutinin conjugated to horseradish peroxidase. Particular attention was paid to tracing local hypothalamic afferents to these nuclei. Injections into the medial mammillary nucleus (MMN) revealed strong projections from the subicular region, and weaker projections from the prefrontal cortex, medial septum, and the nucleus of the diagonal band of Broca. Other descending subcortical projections to the MMN arise from the anterior and the lateral hypothalamic area, the medial preoptic area, and the bed nucleus of the stria terminalis. Ascending afferents to the MMN were found to originate in the raphe and various tegmental nuclei. Following all injections into the MMN, labelled neurons were found in nuclei surrounding the mammillary body. The lateral and posterior subdivisions of the tuberomammillary nucleus projected mainly to the pars medianus and pars medialis of the MMN. The dorsal and ventral premammillary nuclei projected to the pars lateralis of the MMN. The supramammillary nucleus at rostral level had a small projection to the pars medialis and lateralis of the MMN. However, the most obvious projection from this nucleus was to the pars posterior of the MMN, chiefly from the lateral part of the caudal supramammillary nucleus. Injections into the lateral mammillary nucleus revealed inputs from the presubiculum, parasubiculum, septal region, dorsal tegmental nucleus, dorsal raphe nucleus, and periaqueductal gray. In addition, the lateral mammillary nucleus was found to receive a moderate projection from the medial part of the supramammillary nucleus and stronger projections from the lateral part of the caudal supramammillary nucleus. A very light projection was also seen from the lateral and posterior subdivisions of the tuberomammillary nucleus. These findings add to our knowledge of the extensive and complex connectivity of the mammillary nuclei. In particular, the local connections we have demonstrated with the supramammillary and tuberomammillary nuclei indicate the existence of significant local circuits as well as circuits involving more distant brain regions such as the septal nuclei, subiculum, prefrontal cortex, and brain stem tegmentum
PMID: 1380015
ISSN: 0021-9967
CID: 9906

A dopaminergic projection to the rat mammillary nuclei demonstrated by retrograde transport of wheat germ agglutinin-horseradish peroxidase and tyrosine hydroxylase immunohistochemistry

Gonzalo-Ruiz A; Alonso A; Sanz JM; Llinas RR
The presence and distribution of dopaminergic neurons and terminals in the hypothalamus of the rat were studied by tyrosine hydroxylase (TH) immunohistochemistry. Strongly labelled TH-immunoreactive neurons were seen in the dorsomedial hypothalamic nucleus, periventricular region, zona incerta, arcuate nucleus, and supramammillary nucleus. A few TH-positive neurons were also identified in the dorsal and ventral premammillary nucleus, as well as the lateral hypothalamic area. TH-immunoreactive fibres and terminals were unevenly distributed in the mammillary nuclei; small, weakly labelled terminals were scattered in the medial mammillary nucleus, while large, strongly labelled, varicose terminals were densely concentrated in the internal part of the lateral mammillary nucleus. A few dorsoventrally oriented TH-positive axon bundles were also identified in the lateral mammillary nucleus. A dopaminergic projection to the mammillary nuclei from the supramammillary nucleus and lateral hypothalamic area was identified by double labelling with retrograde transport of wheat germ agglutinin-horseradish peroxidase and TH-immunohistochemistry. The lateral mammillary nucleus receives a weak dopaminergic projection from the medial, and stronger projections from the lateral, caudal supramammillary nucleus. The double-labelled neurons in the lateral supramammillary nucleus appear to encapsulate the caudal end of the mammillary nuclei. The medial mammillary nucleus receives a very light dopaminergic projection from the caudal lateral hypothalamic area. These results suggest that the supramammillary nucleus is the principal source of the dopaminergic input to the mammillary nuclei, establishing a local TH-pathway in the mammillary complex. The supramammillary cell groups are able to modulate the limbic system through its dopaminergic input to the mammillary nuclei as well as through its extensive dopaminergic projection to the lateral septal nucleus
PMID: 1380016
ISSN: 0021-9967
CID: 9905