Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:schmia1000

Total Results:

438


Advanced glycation end products and vascular inflammation: implications for accelerated atherosclerosis in diabetes

Basta, Giuseppina; Schmidt, Ann Marie; De Caterina, Raffaele
The formation of advanced glycation end products (AGEs) is an important biochemical abnormality that accompanies diabetes mellitus and, likely, inflammation in general. Here we summarize and discuss recent studies indicating that the effects of AGEs on vessel wall homeostasis may account for the rapidly progressive atherosclerosis associated with diabetes mellitus. Driven by hyperglycemia and oxidant stress, AGEs form to a greatly accelerated degree in diabetes. Within the vessel wall, collagen-linked AGEs may "trap" plasma proteins, quench nitric oxide (NO) activity and interact with specific receptors to modulate a large number of cellular properties. On plasma low density lipoproteins (LDL), AGEs initiate oxidative reactions that promote the formation of oxidized LDL. Interaction of AGEs with endothelial cells as well as with other cells accumulating within the atherosclerotic plaque, such as mononuclear phagocytes and smooth muscle cells (SMCs), provides a mechanism to augment vascular dysfunction. Specifically, the interaction of AGEs with vessel wall components increases vascular permeability, the expression of procoagulant activity and the generation of reactive oxygen species (ROS), resulting in increased endothelial expression of endothelial leukocyte adhesion molecules. AGEs potently modulate initiating steps in atherogenesis involving blood-vessel wall interactions, triggering an inflammatory-proliferative process and, furthermore, critically contribute to propagation of inflammation and vascular perturbation in established disease. Thus, a better understanding of the biochemical mechanisms by which AGEs contribute to such processes in the vessel wall could be relevant to devise preventive and therapeutic strategies for diabetic atherosclerosis.
PMID: 15306213
ISSN: 0008-6363
CID: 779422

Protein glycation: a firm link to endothelial cell dysfunction

Wautier, Jean-Luc; Schmidt, Ann Marie
The advanced glycation end products (AGEs) are a heterogeneous class of molecules, including the following main subgroups: bis(lysyl)imidazolium cross-links, hydroimidazolones, 3-deoxyglucosone derivatives, and monolysyl adducts. AGEs are increased in diabetes, renal failure, and aging. Microvascular lesions correlate with the accumulation of AGEs, as demonstrated in diabetic retinopathy or renal glomerulosclerosis. On endothelial cells, ligation of receptor for AGE (RAGE) by AGEs induces the expression of cell adhesion molecules, tissue factor, cytokines such as interleukin-6, and monocyte chemoattractant protein-1. A chief means by which AGEs via RAGE exert their effects is by generation of reactive oxygen species, at least in part via stimulation of NADPH oxidase. Diabetes-associated vascular dysfunction in vivo can be prevented by blockade of RAGE. Thus, agents that limit AGE formation, increase the catabolism of these species, or antagonize their binding to RAGE may provide new targets for vascular protection in diabetes.
PMID: 15297385
ISSN: 0009-7330
CID: 779432

Central role for aldose reductase pathway in myocardial ischemic injury

Hwang, Yuying C; Kaneko, Michiyo; Bakr, Soliman; Liao, Hui; Lu, Yan; Lewis, Erin R; Yan, Shidu; Ii, Setsuko; Itakura, Mitsuo; Rui, Liu; Skopicki, Hal; Homma, Shunichi; Schmidt, Ann Marie; Oates, Peter J; Szabolcs, Matthias; Ramasamy, Ravichandran
Aldose reductase (AR), a member of the aldo-keto reductase family, has been implicated in the development of vascular and neurological complications of diabetes. Recently, we demonstrated that aldose reductase is a component of myocardial ischemic injury and that inhibitors of this enzyme protect rat hearts from ischemia-reperfusion injury. To rigorously test the effect of aldose reductase on myocardial ischemia-reperfusion injury, we used transgenic mice broadly overexpressing human aldose reductase (ARTg) driven by the major histocompatibility complex I promoter. Hearts from these ARTg or littermate mice (WT) (n=6 in each group) were isolated, perfused under normoxic conditions, then subjected to 50 min of severe low flow ischemia followed by 60 min of reperfusion. Creatine kinase (CK) release (a marker of ischemic injury) was measured during reperfusion; left ventricular developed pressure (LVDP), end diastolic pressure (EDP), and ATP were measured throughout the protocol. CK release was significantly greater in ARTg mice compared with the WT mice. LVDP recovery was significantly reduced in ARTg mice compared with the WT mice. Furthermore, ATP content was higher in WT mice compared with ARTg mice during ischemia and reperfusion. Infarct size measured by staining techniques and myocardial damage evaluated histologically were also significantly worse in ARTg mice hearts than in controls. Pharmacological inhibition of aldose reductase significantly reduced ischemic injury and improved functional recovery in ARTg mice. These data strongly support key roles for AR in ischemic injury and impairment of functional and metabolic recovery after ischemia. We propose that interventions targeting AR may provide a novel adjunctive approach to protect ischemic myocardium
PMID: 15284219
ISSN: 1530-6860
CID: 130792

RAGE axis: Animal models and novel insights into the vascular complications of diabetes

Naka, Yoshifumi; Bucciarelli, Loredana G; Wendt, Thoralf; Lee, Larisse K; Rong, Ling Ling; Ramasamy, Ravichandran; Yan, Shi Fang; Schmidt, Ann Marie
Receptor for AGE (RAGE) is a multi-ligand member of the immunoglobulin superfamily of cell surface molecules. Engagement of RAGE by its signal transduction ligands evokes inflammatory cell infiltration and activation in the vessel wall. In diabetes, when fueled by oxidant stress, hyperglycemia, and superimposed stresses such as hyperlipidemia or acute balloon/endothelial denuding arterial injury, the ligand-RAGE axis amplifies vascular stress and accelerates atherosclerosis and neointimal expansion. In this brief synopsis, we review the use of rodent models to test these concepts. Taken together, our findings support the premise that RAGE is an amplification step in vascular inflammation and acceleration of atherosclerosis. Future studies must rigorously test the potential impact of RAGE blockade in human subjects; such trials are on the horizon
PMID: 15155381
ISSN: 1524-4636
CID: 130795

Blockade of late stages of autoimmune diabetes by inhibition of the receptor for advanced glycation end products

Chen, Yali; Yan, Shirley ShiDu; Colgan, John; Zhang, Hui-Ping; Luban, Jeremy; Schmidt, Ann Marie; Stern, David; Herold, Kevan C
Ligation of the receptor for advanced glycation end products (RAGE) occurs during inflammation. Engagement of RAGE results in enhanced expression of addressins and it is therefore, not surprising that previous studies have shown a role of RAGE/ligand interactions in immune responses including cell/cell contact but the role of RAGE in spontaneous autoimmunity has not been clearly defined. To study the role of RAGE/ligand interactions in autoimmune diabetes, we tested the ability of soluble RAGE, a scavenger of RAGE ligands, in late stages of diabetes development in the NOD mouse-disease transferred with diabetogenic T cells and recurrent disease in NOD/scid recipients of syngeneic islet transplants. RAGE expression was detected on CD4(+), CD8(+), and B cells from diabetic mice and transferred to NOD/scid recipients. RAGE and its ligand, S100B, were found in the islets of NOD/scid mice that developed diabetes. Treatment of recipient NOD/scid mice with soluble RAGE prevented transfer of diabetes and delayed recurrent disease in syngeneic islet transplants. RAGE blockade was associated with increased expression of IL-10 and TGF-beta in the islets from protected mice. RAGE blockade reduced the transfer of disease with enriched T cells, but had no effect when diabetes was transferred with the activated CD4(+) T cell clone, BDC2.5. We conclude that RAGE/ligand interactions are involved in the differentiation of T cells to a mature pathogenic phenotype during the late stages of the development of diabetes
PMID: 15240736
ISSN: 0022-1767
CID: 140643

Enhanced expression of receptor for advanced glycation end products in chronic kidney disease

Hou, Fan Fan; Ren, Hao; Owen, William F Jr; Guo, Zhi Jian; Chen, Ping Yan; Schmidt, Ann Marie; Miyata, Toshio; Zhang, Xun
Inappropriate chronic inflammation associated with progressive, chronic kidney disease (CKD) reflects sustained activation of immunocompetent cells, like monocytes/macrophages. Advanced glycation end products (AGE) accumulate in CKD, but it is unclear if they stimulate monocytes by binding with the receptor for AGE (RAGE). Posited was the notion that RAGE plays a contributory role to monocyte-mediated systemic inflammation of progressive CKD. Peripheral blood monocytes were isolated from 102 patients without diabetes with varying severity of CKD. RAGE expression on peripheral blood monocytes increased with worsening CKD (r2 = 0.73) and was strongly correlated with plasma levels of pentosidine, a marker for AGE (r = 0.71). Strongly positive statistical correlations were observed in patients with CKD between monocyte RAGE and plasma levels of tumor necrosis factor alpha (TNF-alpha) (r = 0.61), the monocyte activation marker, neopterin (r = 0.65), and the systemic acute phase reactant, C-reactive protein (r = 0.44). Monocytes obtained from patients with CKD showed a monotonic increase in the number and affinity of specific AGE binding sites and increased production of TNF-alpha under stimulation of AGE. All these upregulatory responses in uremic monocytes could be largely blocked by an anti-RAGE antibody. It was concluded that RAGE expression was upregulated on monocytes from patients with CKD. Enhanced RAGE may amplify AGE-induced monocytes perturbation and contribute to monocyte-mediated systemic inflammation in progressive CKD.
PMID: 15213278
ISSN: 1046-6673
CID: 779442

RAGE: a novel target for drug intervention in diabetic vascular disease

Hudson, Barry I; Schmidt, Ann Marie
At high levels as seen in diabetes, glucose reacts with and forms adducts (advanced glycation end products; AGEs) on macromolecules including proteins and DNA, eliciting cellular dysfunction and leading to vascular disease. The major means is through cellular receptors; the best characterized is the receptor for advanced glycation end products (RAGE). Accumulation of both AGE/RAGE in addition to other identified ligands of RAGE, including S100/calgranulins, is the hallmark of this receptor in disease pathogenesis. Blockade of ligand-receptor interaction directly at the protein level, or transgenetically, prevents development of micro vascular (nephropathy) and macro vascular (atherosclerosis/restenosis) disease in small animal models. Furthermore, allelic variants of RAGE exist that alter the protein function and gene expression, which may further affect disease outcome. In conclusion, RAGE is a target for drug development to prevent vascular disease in diabetic and nondiabetic subjects.
PMID: 15290845
ISSN: 0724-8741
CID: 779452

PKCbeta regulates ischemia/reperfusion injury in the lung

Fujita, Tomoyuki; Asai, Tomohiro; Andrassy, Martin; Stern, David M; Pinsky, David J; Zou, Yu Shan; Okada, Morihito; Naka, Yoshifumi; Schmidt, Ann Marie; Yan, Shi-Fang
Activation of PKCbetaII is associated with the response to ischemia/reperfusion (I/R), though its role, either pathogenic or protective, has not been determined. In a murine model of single-lung I/R, evidence linking PKCbeta to maladaptive responses is shown in the following studies. Homozygous PKCbeta-null mice and WT mice fed the PKCbeta inhibitor ruboxistaurin subjected to I/R displayed increased survival compared with controls. In PKCbeta-null mice, phosphorylation of extracellular signal-regulated protein kinase-1 and -2 (ERK1/2), JNK, and p38 MAPK was suppressed in I/R. Expression of the immediate early gene, early growth response-1 (Egr-1), and its downstream target genes was significantly increased in WT mice in I/R, particularly in mononuclear phagocytes (MPs), whereas this expression was attenuated in PKCbeta-null mice or WT mice fed ruboxistaurin. In vitro, hypoxia/reoxygenation-mediated induction of Egr-1 in MPs was suppressed by inhibition of PKCbeta, ERK1/2, and JNK, but not by inhibition of p38 MAPK. These findings elucidate key roles for PKCbetaII activation in I/R by coordinated activation of MAPKs (ERK1/2, JNK) and Egr-1
PMCID:419482
PMID: 15173888
ISSN: 0021-9738
CID: 140606

Receptor for advanced glycation end products (RAGE) regulates sepsis but not the adaptive immune response

Liliensiek, Birgit; Weigand, Markus A; Bierhaus, Angelika; Nicklas, Werner; Kasper, Michael; Hofer, Stefan; Plachky, Jens; Grone, Herman-Josef; Kurschus, Florian C; Schmidt, Ann Marie; Yan, Shi Du; Martin, Eike; Schleicher, Erwin; Stern, David M; Hammerling G, G unterJ; Nawroth, Peter P; Arnold, Bernd
While the initiation of the adaptive and innate immune response is well understood, less is known about cellular mechanisms propagating inflammation. The receptor for advanced glycation end products (RAGE), a transmembrane receptor of the immunoglobulin superfamily, leads to perpetuated cell activation. Using novel animal models with defective or tissue-specific RAGE expression, we show that in these animal models RAGE does not play a role in the adaptive immune response. However, deletion of RAGE provides protection from the lethal effects of septic shock caused by cecal ligation and puncture. Such protection is reversed by reconstitution of RAGE in endothelial and hematopoietic cells. These results indicate that the innate immune response is controlled by pattern-recognition receptors not only at the initiating steps but also at the phase of perpetuation
PMCID:419481
PMID: 15173891
ISSN: 0021-9738
CID: 140642

RAGE and its ligands: a lasting memory in diabetic complications?

Yan, Shi-Fang; Ramasamy, Ravichandran; Bucciarelli, Loredana G; Wendt, Thoralf; Lee, Larisse K; Hudson, Barry I; Stern, David M; Lalla, Evanthia; DU Yan, Shi; Rong, Ling Ling; Naka, Yoshifumi; Schmidt, Ann Marie
The complications of diabetes are myriad and represent a rising cause of morbidity and mortality, particularly in the Western world. The update of the Diabetes Control and Clinical Trials Group/Epidemiology of Diabetes Interventions and Complications Research Group (DCCT/EDIC) suggested that previous strict control of hyperglycaemia was associated with reduced carotid atherosclerosis compared to conventional treatment, even after levels of glycosylated haemoglobin between the two treatment groups became indistinguishable. These intriguing findings prompt the key question, why does the blood vessel 'remember'? This review focuses on the hypothesis that the ligand/RAGE axis contributes importantly to glycaemic 'memory'. Studies in rodent models of diabetes suggest that blockade or genetic modification of RAGE suppress diabetes-associated progression of atherosclerosis, exaggerated neointimal expansion consequent to acute arterial injury, and cardiac dysfunction. We propose that therapeutic RAGE blockade will intercept maladaptive diabetes-associated memory in the vessel wall and provide cardiovascular protection in diabetes
PMID: 16305050
ISSN: 1479-1641
CID: 130796