Searched for: in-biosketch:yes
person:af137
Spatial-temporal functional mapping of language at the bedside with electrocorticography
Babajani-Feremi, Abbas; Wheless, James W; Papanicolaou, James W; Wang, Yujing; Fifer, Matthew S; Flinker, Adeen; Korzeniewska, Anna; Cervenka, Mackenzie C; Anderson, William S; Boatman-Reich, Dana F; Crone, Nathan E
PMID: 27956570
ISSN: 1526-632x
CID: 2545662
Spatial-temporal functional mapping of language at the bedside with electrocorticography
Wang, Yujing; Fifer, Matthew S; Flinker, Adeen; Korzeniewska, Anna; Cervenka, Mackenzie C; Anderson, William S; Boatman-Reich, Dana F; Crone, Nathan E
OBJECTIVE: To investigate the feasibility and clinical utility of using passive electrocorticography (ECoG) for online spatial-temporal functional mapping (STFM) of language cortex in patients being monitored for epilepsy surgery. METHODS: We developed and tested an online system that exploits ECoG's temporal resolution to display the evolution of statistically significant high gamma (70-110 Hz) responses across all recording sites activated by a discrete cognitive task. We illustrate how this spatial-temporal evolution can be used to study the function of individual recording sites engaged during different language tasks, and how this approach can be particularly useful for mapping eloquent cortex. RESULTS: Using electrocortical stimulation mapping (ESM) as the clinical gold standard for localizing language cortex, the average sensitivity and specificity of online STFM across 7 patients were 69.9% and 83.5%, respectively. Moreover, relative to regions of interest where discrete cortical lesions have most reliably caused language impairments in the literature, the sensitivity of STFM was significantly greater than that of ESM, while its specificity was also greater than that of ESM, though not significantly so. CONCLUSIONS: This study supports the feasibility and clinical utility of online STFM for mapping human language function, particularly under clinical circumstances in which time is limited and comprehensive ESM is impractical.
PMCID:4818563
PMID: 26935890
ISSN: 1526-632x
CID: 2545682
A Cool Approach to Probing Speech Cortex [Comment]
Flinker, Adeen; Knight, Robert T
In this issue of Neuron, Long et al. (2016) employ a novel technique of intraoperative cortical cooling in humans during speech production. They demonstrate that cooling Broca's area interferes with speech timing but not speech quality.
PMCID:4864495
PMID: 26985719
ISSN: 1097-4199
CID: 2545672
Human Screams Occupy a Privileged Niche in the Communication Soundscape
Arnal, Luc H; Flinker, Adeen; Kleinschmidt, Andreas; Giraud, Anne-Lise; Poeppel, David
Screaming is arguably one of the most relevant communication signals for survival in humans. Despite their practical relevance and their theoretical significance as innate [1] and virtually universal [2, 3] vocalizations, what makes screams a unique signal and how they are processed is not known. Here, we use acoustic analyses, psychophysical experiments, and neuroimaging to isolate those features that confer to screams their alarming nature, and we track their processing in the human brain. Using the modulation power spectrum (MPS [4, 5]), a recently developed, neurally informed characterization of sounds, we demonstrate that human screams cluster within restricted portion of the acoustic space (between approximately 30 and 150 Hz modulation rates) that corresponds to a well-known perceptual attribute, roughness. In contrast to the received view that roughness is irrelevant for communication [6], our data reveal that the acoustic space occupied by the rough vocal regime is segregated from other signals, including speech, a pre-requisite to avoid false alarms in normal vocal communication. We show that roughness is present in natural alarm signals as well as in artificial alarms and that the presence of roughness in sounds boosts their detection in various tasks. Using fMRI, we show that acoustic roughness engages subcortical structures critical to rapidly appraise danger. Altogether, these data demonstrate that screams occupy a privileged acoustic niche that, being separated from other communication signals, ensures their biological and ultimately social efficiency.
PMCID:4562283
PMID: 26190070
ISSN: 1879-0445
CID: 1751082
Redefining the role of Broca's area in speech
Flinker, Adeen; Korzeniewska, Anna; Shestyuk, Avgusta Y; Franaszczuk, Piotr J; Dronkers, Nina F; Knight, Robert T; Crone, Nathan E
For over a century neuroscientists have debated the dynamics by which human cortical language networks allow words to be spoken. Although it is widely accepted that Broca's area in the left inferior frontal gyrus plays an important role in this process, it was not possible, until recently, to detail the timing of its recruitment relative to other language areas, nor how it interacts with these areas during word production. Using direct cortical surface recordings in neurosurgical patients, we studied the evolution of activity in cortical neuronal populations, as well as the Granger causal interactions between them. We found that, during the cued production of words, a temporal cascade of neural activity proceeds from sensory representations of words in temporal cortex to their corresponding articulatory gestures in motor cortex. Broca's area mediates this cascade through reciprocal interactions with temporal and frontal motor regions. Contrary to classic notions of the role of Broca's area in speech, while motor cortex is activated during spoken responses, Broca's area is surprisingly silent. Moreover, when novel strings of articulatory gestures must be produced in response to nonword stimuli, neural activity is enhanced in Broca's area, but not in motor cortex. These unique data provide evidence that Broca's area coordinates the transformation of information across large-scale cortical networks involved in spoken word production. In this role, Broca's area formulates an appropriate articulatory code to be implemented by motor cortex.
PMCID:4352780
PMID: 25730850
ISSN: 1091-6490
CID: 2545692
Speech sounds
Chapter by: Pasley, BN; Flinker, A; Knight, RT
in: Brain mapping : an encyclopedic reference by Toga, Arthur W [Eds]
London, UK : Academic Press, [2015]
pp. 661-666
ISBN: 0123970253
CID: 2681342
Reconstructing speech from human auditory cortex
Pasley, Brian N; David, Stephen V; Mesgarani, Nima; Flinker, Adeen; Shamma, Shihab A; Crone, Nathan E; Knight, Robert T; Chang, Edward F
How the human auditory system extracts perceptually relevant acoustic features of speech is unknown. To address this question, we used intracranial recordings from nonprimary auditory cortex in the human superior temporal gyrus to determine what acoustic information in speech sounds can be reconstructed from population neural activity. We found that slow and intermediate temporal fluctuations, such as those corresponding to syllable rate, were accurately reconstructed using a linear model based on the auditory spectrogram. However, reconstruction of fast temporal fluctuations, such as syllable onsets and offsets, required a nonlinear sound representation based on temporal modulation energy. Reconstruction accuracy was highest within the range of spectro-temporal fluctuations that have been found to be critical for speech intelligibility. The decoded speech representations allowed readout and identification of individual words directly from brain activity during single trial sound presentations. These findings reveal neural encoding mechanisms of speech acoustic parameters in higher order human auditory cortex.
PMCID:3269422
PMID: 22303281
ISSN: 1545-7885
CID: 2545702
Sub-centimeter language organization in the human temporal lobe
Flinker, A; Chang, E F; Barbaro, N M; Berger, M S; Knight, R T
The human temporal lobe is well known to be critical for language comprehension. Previous physiological research has focused mainly on non-invasive neuroimaging and electrophysiological techniques with each approach requiring averaging across many trials and subjects. The results of these studies have implicated extended anatomical regions in peri-sylvian cortex in speech perception. These non-invasive studies typically report a spatially homogenous functional pattern of activity across several centimeters of cortex. We examined the spatiotemporal dynamics of word processing using electrophysiological signals acquired from high-density electrode arrays (4mm spacing) placed directly on the human temporal lobe. Electrocorticographic (ECoG) activity revealed a rich mosaic of language activity, which was functionally distinct at four mm separation. Cortical sites responding specifically to word and not phoneme stimuli were surrounded by sites that responded to both words and phonemes. Other sub-regions of the temporal lobe responded robustly to self-produced speech and minimally to external stimuli while surrounding sites at 4mm distance exhibited an inverse pattern of activation. These data provide evidence for temporal lobe specificity to words as well as self-produced speech. Furthermore, the results provide evidence that cortical processing in the temporal lobe is not spatially homogenous over centimeters of cortex. Rather, language processing is supported by independent and spatially distinct functional sub-regions of cortex at a resolution of at least 4mm.
PMCID:3025271
PMID: 20961611
ISSN: 1090-2155
CID: 2545722
Single-trial speech suppression of auditory cortex activity in humans
Flinker, Adeen; Chang, Edward F; Kirsch, Heidi E; Barbaro, Nicholas M; Crone, Nathan E; Knight, Robert T
The human auditory cortex is engaged in monitoring the speech of interlocutors as well as self-generated speech. During vocalization, auditory cortex activity is reported to be suppressed, an effect often attributed to the influence of an efference copy from motor cortex. Single-unit studies in non-human primates have demonstrated a rich dynamic range of single-trial auditory responses to self-speech consisting of suppressed, nonsuppressed and excited auditory neurons. However, human research using noninvasive methods has only reported suppression of averaged auditory cortex responses to self-generated speech. We addressed this discrepancy by recording electrocorticographic activity from neurosurgical subjects performing auditory repetition tasks. We observed that the degree of suppression varied across different regions of auditory cortex, revealing a variety of suppressed and nonsuppressed responses during vocalization. Importantly, single-trial high-gamma power (gamma(High), 70-150 Hz) robustly tracked individual auditory events and exhibited stable responses across trials for suppressed and nonsuppressed regions.
PMCID:3010242
PMID: 21148003
ISSN: 1529-2401
CID: 2545712
ELECTROCORTICOGRAPHIC SPECTRAL MAPPING FOR THE CORTICAL ORGANIZATION OF HUMAN BEHAVIOR [Meeting Abstract]
Chang, Edward F; Edwards, E; Flinker, A; Secundo, L; Kirsch, H; Barbaro, N; Knight, R
ISI:000270550500043
ISSN: 0013-9580
CID: 2545762