Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:bhabhg01

Total Results:

61


Nanometer-accuracy distance measurements between fluorophores at the single-molecule level

Niekamp, Stefan; Sung, Jongmin; Huynh, Walter; Bhabha, Gira; Vale, Ronald D; Stuurman, Nico
Light microscopy is a powerful tool for probing the conformations of molecular machines at the single-molecule level. Single-molecule Förster resonance energy transfer can measure intramolecular distance changes of single molecules in the range of 2 to 8 nm. However, current superresolution measurements become error-prone below 25 nm. Thus, new single-molecule methods are needed for measuring distances in the 8- to 25-nm range. Here, we describe methods that utilize information about localization and imaging errors to measure distances between two different color fluorophores with ∼1-nm accuracy at distances >2 nm. These techniques can be implemented in high throughput using a standard total internal reflection fluorescence microscope and open-source software. We applied our two-color localization method to uncover an unexpected ∼4-nm nucleotide-dependent conformational change in the coiled-coil "stalk" of the motor protein dynein. We anticipate that these methods will be useful for high-accuracy distance measurements of single molecules over a wide range of length scales.
PMID: 30770448
ISSN: 1091-6490
CID: 3656502

Architectures of Lipid Transport Systems for the Bacterial Outer Membrane

Ekiert, Damian C; Bhabha, Gira; Isom, Georgia L; Greenan, Garrett; Ovchinnikov, Sergey; Henderson, Ian R; Cox, Jeffery S; Vale, Ronald D
How phospholipids are trafficked between the bacterial inner and outer membranes through the hydrophilic space of the periplasm is not known. We report that members of the mammalian cell entry (MCE) protein family form hexameric assemblies with a central channel capable of mediating lipid transport. The E. coli MCE protein, MlaD, forms a ring associated with an ABC transporter complex in the inner membrane. A soluble lipid-binding protein, MlaC, ferries lipids between MlaD and an outer membrane protein complex. In contrast, EM structures of two other E. coli MCE proteins show that YebT forms an elongated tube consisting of seven stacked MCE rings, and PqiB adopts a syringe-like architecture. Both YebT and PqiB create channels of sufficient length to span the periplasmic space. This work reveals diverse architectures of highly conserved protein-based channels implicated in the transport of lipids between the membranes of bacteria and some eukaryotic organelles.
PMCID:5467742
PMID: 28388411
ISSN: 1097-4172
CID: 2530792

Architectures of Lipid Transport Systems for the Bacterial Outer Membrane [Meeting Abstract]

Bhabha, Gira; Ekiert, Damian C; Greenan, Garrett; Ovchinnikov, Sergey; Cox, Jeffery; Vale, Ronald D
ISI:000402328000075
ISSN: 1542-0086
CID: 2597552

How Dynein Moves Along Microtubules

Bhabha, Gira; Johnson, Graham T; Schroeder, Courtney M; Vale, Ronald D
Cytoplasmic dynein, a member of the AAA (ATPases Associated with diverse cellular Activities) family of proteins, drives the processive movement of numerous intracellular cargos towards the minus end of microtubules. Here, we summarize the structural and motile properties of dynein and highlight features that distinguish this motor from kinesin-1 and myosin V, two well-studied transport motors. Integrating information from recent crystal and cryoelectron microscopy structures, as well as high-resolution single-molecule studies, we also discuss models for how dynein biases its movement in one direction along a microtubule track, and present a movie that illustrates these principles.
PMCID:4706479
PMID: 26678005
ISSN: 0968-0004
CID: 2291532

Exploring the repeat protein universe through computational protein design

Brunette, T J; Parmeggiani, Fabio; Huang, Po-Ssu; Bhabha, Gira; Ekiert, Damian C; Tsutakawa, Susan E; Hura, Greg L; Tainer, John A; Baker, David
A central question in protein evolution is the extent to which naturally occurring proteins sample the space of folded structures accessible to the polypeptide chain. Repeat proteins composed of multiple tandem copies of a modular structure unit are widespread in nature and have critical roles in molecular recognition, signalling, and other essential biological processes. Naturally occurring repeat proteins have been re-engineered for molecular recognition and modular scaffolding applications. Here we use computational protein design to investigate the space of folded structures that can be generated by tandem repeating a simple helix-loop-helix-loop structural motif. Eighty-three designs with sequences unrelated to known repeat proteins were experimentally characterized. Of these, 53 are monomeric and stable at 95 degrees C, and 43 have solution X-ray scattering spectra consistent with the design models. Crystal structures of 15 designs spanning a broad range of curvatures are in close agreement with the design models with root mean square deviations ranging from 0.7 to 2.5 A. Our results show that existing repeat proteins occupy only a small fraction of the possible repeat protein sequence and structure space and that it is possible to design novel repeat proteins with precisely specified geometries, opening up a wide array of new possibilities for biomolecular engineering.
PMCID:4845728
PMID: 26675729
ISSN: 1476-4687
CID: 2291262

Keep on moving: discovering and perturbing the conformational dynamics of enzymes

Bhabha, Gira; Biel, Justin T; Fraser, James S
CONSPECTUS: Because living organisms are in constant motion, the word "dynamics" can hold many meanings to biologists. Here we focus specifically on the conformational changes that occur in proteins and how studying these protein dynamics may provide insights into enzymatic catalysis. Advances in integrating techniques such as X-ray crystallography, nuclear magnetic resonance, and electron cryomicroscopy (cryo EM) allow us to model the dominant structures and exchange rates for many proteins and protein complexes. For proteins amenable to atomic resolution techniques, the major questions shift from simply describing the motions to discovering their role in function. Concurrently, there is an increasing need for using perturbations to test predictive models of dynamics-function relationships. Examples are the catalytic cycles of dihydrofolate reductase (DHFR) and cyclophilin A (CypA). In DHFR, mutations that alter the ability of the active site to sample productive higher energy states on the millisecond time scale reduce the rate of hydride transfer significantly. Recently identified rescue mutations restore function, but the mechanism by which they do so remains unclear. The exact role of any changes in the dynamics remains an open question. For CypA, a network of side chains that exchange between two conformations is critical for catalysis. Mutations that lock the network in one state also reduce catalytic activity. A further understanding of enzyme dynamics of well-studied enzymes such as dihydrofolate reductase and cyclophilin A will lead to improvement in ability to modulate the functions of computationally designed enzymes and large macromolecular machines. In designed enzymes, directed evolution experiments increase catalytic rates. Detailed X-ray studies suggest that these mutations likely limit the conformational space explored by residues in the active site. For proteins where atomic resolution information is currently inaccessible, other techniques such as cryo-EM and high-resolution single molecule microscopy continue to advance. Understanding the conformational dynamics of larger systems such as protein machines will likely become more accessible and provide new opportunities to rationally modulate protein function.
PMCID:4334266
PMID: 25539415
ISSN: 1520-4898
CID: 2291542

Allosteric communication in the dynein motor domain

Bhabha, Gira; Cheng, Hui-Chun; Zhang, Nan; Moeller, Arne; Liao, Maofu; Speir, Jeffrey A; Cheng, Yifan; Vale, Ronald D
Dyneins power microtubule motility using ring-shaped, AAA-containing motor domains. Here, we report X-ray and electron microscopy (EM) structures of yeast dynein bound to different ATP analogs, which collectively provide insight into the roles of dynein's two major ATPase sites, AAA1 and AAA3, in the conformational change mechanism. ATP binding to AAA1 triggers a cascade of conformational changes that propagate to all six AAA domains and cause a large movement of the "linker," dynein's mechanical element. In contrast to the role of AAA1 in driving motility, nucleotide transitions in AAA3 gate the transmission of conformational changes between AAA1 and the linker, suggesting that AAA3 acts as a regulatory switch. Further structural and mutational studies also uncover a role for the linker in regulating the catalytic cycle of AAA1. Together, these results reveal how dynein's two major ATP-binding sites initiate and modulate conformational changes in the motor domain during motility.
PMCID:4269335
PMID: 25417161
ISSN: 1097-4172
CID: 2291552

De novo-designed enzymes as small-molecule-regulated fluorescence imaging tags and fluorescent reporters

Liu, Yu; Zhang, Xin; Tan, Yun Lei; Bhabha, Gira; Ekiert, Damian C; Kipnis, Yakov; Bjelic, Sinisa; Baker, David; Kelly, Jeffery W
Enzyme-based tags attached to a protein-of-interest (POI) that react with a small molecule, rendering the conjugate fluorescent, are very useful for studying the POI in living cells. These tags are typically based on endogenous enzymes, so protein engineering is required to ensure that the small-molecule probe does not react with the endogenous enzyme in the cell of interest. Here we demonstrate that de novo-designed enzymes can be used as tags to attach to POIs. The inherent bioorthogonality of the de novo-designed enzyme-small-molecule probe reaction circumvents the need for protein engineering, since these enzyme activities are not present in living organisms. Herein, we transform a family of de novo-designed retroaldolases into variable-molecular-weight tags exhibiting fluorescence imaging, reporter, and electrophoresis applications that are regulated by tailored, reactive small-molecule fluorophores.
PMCID:4183642
PMID: 25209927
ISSN: 1520-5126
CID: 2291282

Activation of cytoplasmic dynein motility by dynactin-cargo adapter complexes

McKenney, Richard J; Huynh, Walter; Tanenbaum, Marvin E; Bhabha, Gira; Vale, Ronald D
Cytoplasmic dynein is a molecular motor that transports a large variety of cargoes (e.g., organelles, messenger RNAs, and viruses) along microtubules over long intracellular distances. The dynactin protein complex is important for dynein activity in vivo, but its precise role has been unclear. Here, we found that purified mammalian dynein did not move processively on microtubules in vitro. However, when dynein formed a complex with dynactin and one of four different cargo-specific adapter proteins, the motor became ultraprocessive, moving for distances similar to those of native cargoes in living cells. Thus, we propose that dynein is largely inactive in the cytoplasm and that a variety of adapter proteins activate processive motility by linking dynactin to dynein only when the motor is bound to its proper cargo.
PMCID:4224444
PMID: 25035494
ISSN: 1095-9203
CID: 2291562

Small molecule probes to quantify the functional fraction of a specific protein in a cell with minimal folding equilibrium shifts

Liu, Yu; Tan, Yun Lei; Zhang, Xin; Bhabha, Gira; Ekiert, Damian C; Genereux, Joseph C; Cho, Younhee; Kipnis, Yakov; Bjelic, Sinisa; Baker, David; Kelly, Jeffery W
Although much is known about protein folding in buffers, it remains unclear how the cellular protein homeostasis network functions as a system to partition client proteins between folded and functional, soluble and misfolded, and aggregated conformations. Herein, we develop small molecule folding probes that specifically react with the folded and functional fraction of the protein of interest, enabling fluorescence-based quantification of this fraction in cell lysate at a time point of interest. Importantly, these probes minimally perturb a protein's folding equilibria within cells during and after cell lysis, because sufficient cellular chaperone/chaperonin holdase activity is created by rapid ATP depletion during cell lysis. The folding probe strategy and the faithful quantification of a particular protein's functional fraction are exemplified with retroaldolase, a de novo designed enzyme, and transthyretin, a nonenzyme protein. Our findings challenge the often invoked assumption that the soluble fraction of a client protein is fully folded in the cell. Moreover, our results reveal that the partitioning of destabilized retroaldolase and transthyretin mutants between the aforementioned conformational states is strongly influenced by cytosolic proteostasis network perturbations. Overall, our results suggest that applying a chemical folding probe strategy to other client proteins offers opportunities to reveal how the proteostasis network functions as a system to regulate the folding and function of individual client proteins in vivo.
PMCID:3970509
PMID: 24591605
ISSN: 1091-6490
CID: 2291292