Searched for: in-biosketch:yes
person:boekej01
Safety by design: Biosafety and biosecurity in the age of synthetic genomics
Hoffmann, Stefan A.; Diggans, James; Densmore, Douglas; Dai, Junbiao; Knight, Tom; Leproust, Emily; Boeke, Jef D.; Wheeler, Nicole; Cai, Yizhi
Technologies to profoundly engineer biology are becoming increasingly affordable, powerful, and accessible to a widening group of actors. While offering tremendous potential to fuel biological research and the bioeconomy, this development also increases the risk of inadvertent or deliberate creation and dissemination of pathogens. Effective regulatory and technological frameworks need to be developed and deployed to manage these emerging biosafety and biosecurity risks. Here, we review digital and biological approaches of a range of technology readiness levels suited to address these challenges. Digital sequence screening technologies already are used to control access to synthetic DNA of concern. We examine the current state of the art of sequence screening, challenges and future directions, and environmental surveillance for the presence of engineered organisms. As biosafety layer on the organism level, we discuss genetic biocontainment systems that can be used to created host organisms with an intrinsic barrier against unchecked environmental proliferation.
SCOPUS:85149922461
ISSN: 2589-0042
CID: 5446862
Two differentially stable rDNA loci coexist on the same chromosome and form a single nucleolus
Lazar-Stefanita, Luciana; Luo, Jingchuan; Haase, Max A B; Zhang, Weimin; Boeke, Jef D
The nucleolus is the most prominent membraneless compartment within the nucleus-dedicated to the metabolism of ribosomal RNA. Nucleoli are composed of hundreds of ribosomal DNA (rDNA) repeated genes that form large chromosomal clusters, whose high recombination rates can cause nucleolar dysfunction and promote genome instability. Intriguingly, the evolving architecture of eukaryotic genomes appears to have favored two strategic rDNA locations-where a single locus per chromosome is situated either near the centromere (CEN) or the telomere. Here, we deployed an innovative genome engineering approach to cut and paste to an ectopic chromosomal location-the ~1.5 mega-base rDNA locus in a single step using CRISPR technology. This "megablock" rDNA engineering was performed in a fused-karyotype strain of Saccharomyces cerevisiae. The strategic repositioning of this locus within the megachromosome allowed experimentally mimicking and monitoring the outcome of an rDNA migratory event, in which twin rDNA loci coexist on the same chromosomal arm. We showed that the twin-rDNA yeast readily adapts, exhibiting wild-type growth and maintaining rRNA homeostasis, and that the twin loci form a single nucleolus throughout the cell cycle. Unexpectedly, the size of each rDNA array appears to depend on its position relative to the CEN, in that the locus that is CEN-distal undergoes size reduction at a higher frequency compared to the CEN-proximal counterpart. Finally, we provided molecular evidence supporting a mechanism called paralogous cis-rDNA interference, which potentially explains why placing two identical repeated arrays on the same chromosome may negatively affect their function and structural stability.
PMCID:9992848
PMID: 36821584
ISSN: 1091-6490
CID: 5432312
DASH/Dam1 complex mutants stabilize ploidy in histone-humanized yeast by weakening kinetochore-microtubule attachments
Haase, Max A B; Ólafsson, Guðjón; Flores, Rachel L; Boakye-Ansah, Emmanuel; Zelter, Alex; Dickinson, Miles Sasha; Lazar-Stefanita, Luciana; Truong, David M; Asbury, Charles L; Davis, Trisha N; Boeke, Jef D
Forcing budding yeast to chromatinize their DNA with human histones manifests an abrupt fitness cost. We previously proposed chromosomal aneuploidy and missense mutations as two potential modes of adaptation to histone humanization. Here, we show that aneuploidy in histone-humanized yeasts is specific to a subset of chromosomes that are defined by their centromeric evolutionary origins but that these aneuploidies are not adaptive. Instead, we find that a set of missense mutations in outer kinetochore proteins drives adaptation to human histones. Furthermore, we characterize the molecular mechanism underlying adaptation in two mutants of the outer kinetochore DASH/Dam1 complex, which reduce aneuploidy by suppression of chromosome instability. Molecular modeling and biochemical experiments show that these two mutants likely disrupt a conserved oligomerization interface thereby weakening microtubule attachments. We propose a model through which weakened microtubule attachments promote increased kinetochore-microtubule turnover and thus suppress chromosome instability. In sum, our data show how a set of point mutations evolved in histone-humanized yeasts to counterbalance human histone-induced chromosomal instability through weakening microtubule interactions, eventually promoting a return to euploidy.
PMID: 36651597
ISSN: 1460-2075
CID: 5410732
Resurrecting essential amino acid biosynthesis in mammalian cells
Trolle, Julie; McBee, Ross M; Kaufman, Andrew; Pinglay, Sudarshan; Berger, Henri; German, Sergei; Liu, Liyuan; Shen, Michael J; Guo, Xinyi; Martin, J Andrew; Pacold, Michael E; Jones, Drew R; Boeke, Jef D; Wang, Harris H
Major genomic deletions in independent eukaryotic lineages have led to repeated ancestral loss of biosynthesis pathways for nine of the twenty canonical amino acids1. While the evolutionary forces driving these polyphyletic deletion events are not well understood, the consequence is that extant metazoans are unable to produce nine essential amino acids (EAAs). Previous studies have highlighted that EAA biosynthesis tends to be more energetically costly2,3, raising the possibility that these pathways were lost from organisms with access to abundant EAAs in the environment4,5. It is unclear whether present-day metazoans can reaccept these pathways to resurrect biosynthetic capabilities that were lost long ago or whether evolution has rendered EAA pathways incompatible with metazoan metabolism. Here, we report progress on a large-scale synthetic genomics effort to reestablish EAA biosynthetic functionality in mammalian cells. We designed codon-optimized biosynthesis pathways based on genes mined from Escherichia coli. These pathways were de novo synthesized in 3 kilobase chunks, assembled in yeasto and genomically integrated into a Chinese Hamster Ovary (CHO) cell line. One synthetic pathway produced valine at a sufficient level for cell viability and proliferation, and thus represents a successful example of metazoan EAA biosynthesis restoration. This prototrophic CHO line grows in valine-free medium, and metabolomics using labeled precursors verified de novo biosynthesis of valine. RNA-seq profiling of the valine prototrophic CHO line showed that the synthetic pathway minimally disrupted the cellular transcriptome. Furthermore, valine prototrophic cells exhibited transcriptional signatures associated with rescue from nutritional starvation. 13C-tracing revealed build-up of pathway intermediate 2,3-dihydroxy-3-isovalerate in these cells. Increasing the dosage of downstream ilvD boosted pathway performance and allowed for long-term propagation of second-generation cells in valine-free medium at a consistent doubling time of 3.2 days. This work demonstrates that mammalian metabolism is amenable to restoration of ancient core pathways, paving a path for genome-scale efforts to synthetically restore metabolic functions to the metazoan lineage.
PMID: 36165439
ISSN: 2050-084x
CID: 5334162
Systems genomics in age-related macular degeneration
den Hollander, Anneke I; Mullins, Robert F; Orozco, Luz D; Voigt, Andrew P; Chen, Hsu-Hsin; Strunz, Tobias; Grassmann, Felix; Haines, Jonathan L; Kuiper, Jonas J W; Tumminia, Santa J; Allikmets, Rando; Hageman, Gregory S; Stambolian, Dwight; Klaver, Caroline C W; Boeke, Jef D; Chen, Hao; Honigberg, Lee; Katti, Suresh; Frazer, Kelly A; Weber, Bernhard H F; Gorin, Michael B
Genomic studies in age-related macular degeneration (AMD) have identified genetic variants that account for the majority of AMD risk. An important next step is to understand the functional consequences and downstream effects of the identified AMD-associated genetic variants. Instrumental for this next step are 'omics' technologies, which enable high-throughput characterization and quantification of biological molecules, and subsequent integration of genomics with these omics datasets, a field referred to as systems genomics. Single cell sequencing studies of the retina and choroid demonstrated that the majority of candidate AMD genes identified through genomic studies are expressed in non-neuronal cells, such as the retinal pigment epithelium (RPE), glia, myeloid and choroidal cells, highlighting that many different retinal and choroidal cell types contribute to the pathogenesis of AMD. Expression quantitative trait locus (eQTL) studies in retinal tissue have identified putative causal genes by demonstrating a genetic overlap between gene regulation and AMD risk. Linking genetic data to complement measurements in the systemic circulation has aided in understanding the effect of AMD-associated genetic variants in the complement system, and supports that protein QTL (pQTL) studies in plasma or serum samples may aid in understanding the effect of genetic variants and pinpointing causal genes in AMD. A recent epigenomic study fine-mapped AMD causal variants by determing regulatory regions in RPE cells differentiated from induced pluripotent stem cells (iPSC-RPE). Another approach that is being employed to pinpoint causal AMD genes is to produce synthetic DNA assemblons representing risk and protective haplotypes, which are then delivered to cellular or animal model systems. Pinpointing causal genes and understanding disease mechanisms is crucial for the next step towards clinical translation. Clinical trials targeting proteins encoded by the AMD-associated genomic loci C3, CFB, CFI, CFH, and ARMS2/HTRA1 are currently ongoing, and a phase III clinical trial for C3 inhibition recently showed a modest reduction of lesion growth in geographic atrophy. The EYERISK consortium recently developed a genetic test for AMD that allows genotyping of common and rare variants in AMD-associated genes. Polygenic risk scores (PRS) were applied to quantify AMD genetic risk, and may aid in predicting AMD progression. In conclusion, genomic studies represent a turning point in our exploration of AMD. The results of those studies now serve as a driving force for several clinical trials. Expanding to omics and systems genomics will further decipher function and causality from the associations that have been reported, and will enable the development of therapies that will lessen the burden of AMD.
PMID: 36108770
ISSN: 1096-0007
CID: 5336392
Karyotype engineering reveals spatio-temporal control of replication firing and gene contacts
Lazar-Stefanita, Luciana; Luo, Jingchuan; Montagne, Remi; Thierry, Agnes; Sun, Xiaoji; Mercy, Guillaume; Mozziconacci, Julien; Koszul, Romain; Boeke, Jef D
Eukaryotic genomes vary in terms of size, chromosome number, and genetic complexity. Their temporal organization is complex, reflecting coordination between DNA folding and function. Here, we used fused karyotypes of budding yeast to characterize the effects of chromosome length on nuclear architecture. We found that size-matched megachromosomes expand to occupy a larger fraction of the enlarged nucleus. Hi-C maps reveal changes in the three-dimensional structure corresponding to inactivated centromeres and telomeres. De-clustering of inactive centromeres results in their loss of early replication, highlighting a functional correlation between genome organization and replication timing. Repositioning of former telomere-proximal regions on chromosome arms exposed a subset of contacts between flocculin genes. Chromatin reorganization of megachromosomes during cell division remained unperturbed, and it revealed that centromere-rDNA contacts in anaphase, extending over 0.3 Mb on wild-type chromosome, cannot exceed ∼1.7 Mb. Our results highlight the relevance of engineered karyotypes to unveiling relationships between genome organization and function.
PMCID:9365758
PMID: 35983101
ISSN: 2666-979x
CID: 5300242
Synthetic regulatory reconstitution reveals principles of mammalian Hox cluster regulation
Pinglay, Sudarshan; Bulajić, Milica; Rahe, Dylan P; Huang, Emily; Brosh, Ran; Mamrak, Nicholas E; King, Benjamin R; German, Sergei; Cadley, John A; Rieber, Lila; Easo, Nicole; Lionnet, Timothée; Mahony, Shaun; Maurano, Matthew T; Holt, Liam J; Mazzoni, Esteban O; Boeke, Jef D
Precise Hox gene expression is crucial for embryonic patterning. Intra-Hox transcription factor binding and distal enhancer elements have emerged as the major regulatory modules controlling Hox gene expression. However, quantifying their relative contributions has remained elusive. Here, we introduce "synthetic regulatory reconstitution," a conceptual framework for studying gene regulation, and apply it to the HoxA cluster. We synthesized and delivered variant rat HoxA clusters (130 to 170 kilobases) to an ectopic location in the mouse genome. We found that a minimal HoxA cluster recapitulated correct patterns of chromatin remodeling and transcription in response to patterning signals, whereas the addition of distal enhancers was needed for full transcriptional output. Synthetic regulatory reconstitution could provide a generalizable strategy for deciphering the regulatory logic of gene expression in complex genomes.
PMID: 35771912
ISSN: 1095-9203
CID: 5268842
A conditional counterselectable Piga knockout in mouse embryonic stem cells for advanced genome writing applications
Zhang, Weimin; Brosh, Ran; McCulloch, Laura H; Zhu, Yinan; Ashe, Hannah; Ellis, Gwen; Camellato, Brendan R; Kim, Sang Yong; Maurano, Matthew T; Boeke, Jef D
Overwriting counterselectable markers is an efficient strategy for removing wild-type DNA or replacing it with payload DNA of interest. Currently, one bottleneck of efficient genome engineering in mammals is the shortage of counterselectable (negative selection) markers that work robustly without affecting organismal developmental potential. Here, we report a conditional Piga knockout strategy that enables efficient proaerolysin-based counterselection in mouse embryonic stem cells. The conditional Piga knockout cells show similar proaerolysin resistance as full (non-conditional) Piga deletion cells, which enables the use of a PIGA transgene as a counterselectable marker for genome engineering purposes. Native Piga function is readily restored in conditional Piga knockout cells to facilitate subsequent mouse development. We also demonstrate the generality of our strategy by engineering a conditional knockout of endogenous Hprt. Taken together, our work provides a new tool for advanced mouse genome writing and mouse model establishment.
PMCID:9184564
PMID: 35692632
ISSN: 2589-0042
CID: 5282452
Results of Two Cases of Pig-to-Human Kidney Xenotransplantation [Case Report]
Montgomery, Robert A; Stern, Jeffrey M; Lonze, Bonnie E; Tatapudi, Vasishta S; Mangiola, Massimo; Wu, Ming; Weldon, Elaina; Lawson, Nikki; Deterville, Cecilia; Dieter, Rebecca A; Sullivan, Brigitte; Boulton, Gabriella; Parent, Brendan; Piper, Greta; Sommer, Philip; Cawthon, Samantha; Duggan, Erin; Ayares, David; Dandro, Amy; Fazio-Kroll, Ana; Kokkinaki, Maria; Burdorf, Lars; Lorber, Marc; Boeke, Jef D; Pass, Harvey; Keating, Brendan; Griesemer, Adam; Ali, Nicole M; Mehta, Sapna A; Stewart, Zoe A
BACKGROUND:Xenografts from genetically modified pigs have become one of the most promising solutions to the dearth of human organs available for transplantation. The challenge in this model has been hyperacute rejection. To avoid this, pigs have been bred with a knockout of the alpha-1,3-galactosyltransferase gene and with subcapsular autologous thymic tissue. METHODS:We transplanted kidneys from these genetically modified pigs into two brain-dead human recipients whose circulatory and respiratory activity was maintained on ventilators for the duration of the study. We performed serial biopsies and monitored the urine output and kinetic estimated glomerular filtration rate (eGFR) to assess renal function and xenograft rejection. RESULTS:in Recipient 2. In both recipients, the creatinine level, which had been at a steady state, decreased after implantation of the xenograft, from 1.97 to 0.82 mg per deciliter in Recipient 1 and from 1.10 to 0.57 mg per deciliter in Recipient 2. The transplanted kidneys remained pink and well-perfused, continuing to make urine throughout the study. Biopsies that were performed at 6, 24, 48, and 54 hours revealed no signs of hyperacute or antibody-mediated rejection. Hourly urine output with the xenograft was more than double the output with the native kidneys. CONCLUSIONS:Genetically modified kidney xenografts from pigs remained viable and functioning in brain-dead human recipients for 54 hours, without signs of hyperacute rejection. (Funded by Lung Biotechnology.).
PMID: 35584156
ISSN: 1533-4406
CID: 5230812
Transcriptional neighborhoods regulate transcript isoform lengths and expression levels
Brooks, Aaron N; Hughes, Amanda L; Clauder-Münster, Sandra; Mitchell, Leslie A; Boeke, Jef D; Steinmetz, Lars M
Sequence features of genes and their flanking regulatory regions are determinants of RNA transcript isoform expression and have been used as context-independent plug-and-play modules in synthetic biology. However, genetic context-including the adjacent transcriptional environment-also influences transcript isoform expression levels and boundaries. We used synthetic yeast strains with stochastically repositioned genes to systematically disentangle the effects of sequence and context. Profiling 120 million full-length transcript molecules across 612 genomic perturbations, we observed sequence-independent alterations to gene expression levels and transcript isoform boundaries that were influenced by neighboring transcription. We identified features of transcriptional context that could predict these alterations and used these features to engineer a synthetic circuit where transcript length was controlled by neighboring transcription. This demonstrates how positional context can be leveraged in synthetic genome engineering.
PMID: 35239377
ISSN: 1095-9203
CID: 5174602