Searched for: in-biosketch:yes
person:castep02
The hVps34-SGK3 pathway alleviates sustained PI3K/Akt inhibition by stimulating mTORC1 and tumour growth
Bago, Ruzica; Sommer, Eeva; Castel, Pau; Crafter, Claire; Bailey, Fiona P; Shpiro, Natalia; Baselga, José; Cross, Darren; Eyers, Patrick A; Alessi, Dario R
We explore mechanisms that enable cancer cells to tolerate PI3K or Akt inhibitors. Prolonged treatment of breast cancer cells with PI3K or Akt inhibitors leads to increased expression and activation of a kinase termed SGK3 that is related to Akt. Under these conditions, SGK3 is controlled by hVps34 that generates PtdIns(3)P, which binds to the PX domain of SGK3 promoting phosphorylation and activation by its upstream PDK1 activator. Furthermore, under conditions of prolonged PI3K/Akt pathway inhibition, SGK3 substitutes for Akt by phosphorylating TSC2 to activate mTORC1. We characterise 14h, a compound that inhibits both SGK3 activity and activation in vivo, and show that a combination of Akt and SGK inhibitors induced marked regression of BT-474 breast cancer cell-derived tumours in a xenograft model. Finally, we present the kinome-wide analysis of mRNA expression dynamics induced by PI3K/Akt inhibition. Our findings highlight the importance of the hVps34-SGK3 pathway and suggest it represents a mechanism to counteract inhibition of PI3K/Akt signalling. The data support the potential of targeting both Akt and SGK as a cancer therapeutic.
PMID: 27481935
ISSN: 1460-2075
CID: 4604392
PDK1-SGK1 Signaling Sustains AKT-Independent mTORC1 Activation and Confers Resistance to PI3Kα Inhibition
Castel, Pau; Ellis, Haley; Bago, Ruzica; Toska, Eneda; Razavi, Pedram; Carmona, F Javier; Kannan, Srinivasaraghavan; Verma, Chandra S; Dickler, Maura; Chandarlapaty, Sarat; Brogi, Edi; Alessi, Dario R; Baselga, José; Scaltriti, Maurizio
PIK3CA, which encodes the p110α subunit of PI3K, is frequently mutated and oncogenic in breast cancer. PI3Kα inhibitors are in clinical development and despite promising early clinical activity, intrinsic resistance is frequent among patients. We have previously reported that residual downstream mTORC1 activity upon treatment with PI3Kα inhibitors drives resistance to these agents. However, the mechanism underlying this phenotype is not fully understood. Here we show that in cancer cells resistant to PI3Kα inhibition, PDK1 blockade restores sensitivity to these therapies. SGK1, which is activated by PDK1, contributes to the maintenance of residual mTORC1 activity through direct phosphorylation and inhibition of TSC2. Targeting either PDK1 or SGK1 prevents mTORC1 activation, restoring the antitumoral effects of PI3Kα inhibition in resistant cells.
PMCID:4982440
PMID: 27451907
ISSN: 1878-3686
CID: 4134552
Somatic PIK3CA mutations as a driver of sporadic venous malformations
Castel, Pau; Carmona, F Javier; Grego-Bessa, Joaquim; Berger, Michael F; Viale, Agnès; Anderson, Kathryn V; Bague, Silvia; Scaltriti, Maurizio; Antonescu, Cristina R; Baselga, Eulà lia; Baselga, José
Venous malformations (VM) are vascular malformations characterized by enlarged and distorted blood vessel channels. VM grow over time and cause substantial morbidity because of disfigurement, bleeding, and pain, representing a clinical challenge in the absence of effective treatments (Nguyenet al, 2014; Uebelhoeret al, 2012). Somatic mutations may act as drivers of these lesions, as suggested by the identification of TEK mutations in a proportion of VM (Limayeet al, 2009). We report that activating PIK3CA mutations gives rise to sporadic VM in mice, which closely resemble the histology of the human disease. Furthermore, we identified mutations in PIK3CA and related genes of the PI3K (phosphatidylinositol 3-kinase)/AKT pathway in about 30% of human VM that lack TEK alterations. PIK3CA mutations promote downstream signaling and proliferation in endothelial cells and impair normal vasculogenesis in embryonic development. We successfully treated VM in mouse models using pharmacological inhibitors of PI3Kα administered either systemically or topically. This study elucidates the etiology of a proportion of VM and proposes a therapeutic approach for this disease.
PMCID:4962922
PMID: 27030594
ISSN: 1946-6242
CID: 4604362
The tumor suppressor PTEN and the PDK1 kinase regulate formation of the columnar neural epithelium
Grego-Bessa, Joaquim; Bloomekatz, Joshua; Castel, Pau; Omelchenko, Tatiana; Baselga, José; Anderson, Kathryn V
Epithelial morphogenesis and stability are essential for normal development and organ homeostasis. The mouse neural plate is a cuboidal epithelium that remodels into a columnar pseudostratified epithelium over the course of 24 hr. Here we show that the transition to a columnar epithelium fails in mutant embryos that lack the tumor suppressor PTEN, although proliferation, patterning and apical-basal polarity markers are normal in the mutants. The Pten phenotype is mimicked by constitutive activation of PI3 kinase and is rescued by the removal of PDK1 (PDPK1), but does not depend on the downstream kinases AKT and mTORC1. High resolution imaging shows that PTEN is required for stabilization of planar cell packing in the neural plate and for the formation of stable apical-basal microtubule arrays. The data suggest that appropriate levels of membrane-associated PDPK1 are required for stabilization of apical junctions, which promotes cell elongation, during epithelial morphogenesis.
PMCID:4739759
PMID: 26809587
ISSN: 2050-084x
CID: 4604352
PI3K inhibition results in enhanced estrogen receptor function and dependence in hormone receptor-positive breast cancer
Bosch, Ana; Li, Zhiqiang; Bergamaschi, Anna; Ellis, Haley; Toska, Eneda; Prat, Aleix; Tao, Jessica J; Spratt, Daniel E; Viola-Villegas, Nerissa T; Castel, Pau; Minuesa, Gerard; Morse, Natasha; Rodón, Jordi; Ibrahim, Yasir; Cortes, Javier; Perez-Garcia, Jose; Galvan, Patricia; Grueso, Judit; Guzman, Marta; Katzenellenbogen, John A; Kharas, Michael; Lewis, Jason S; Dickler, Maura; Serra, Violeta; Rosen, Neal; Chandarlapaty, Sarat; Scaltriti, Maurizio; Baselga, José
Activating mutations of PIK3CA are the most frequent genomic alterations in estrogen receptor (ER)-positive breast tumors, and selective phosphatidylinositol 3-kinase α (PI3Kα) inhibitors are in clinical development. The activity of these agents, however, is not homogeneous, and only a fraction of patients bearing PIK3CA-mutant ER-positive tumors benefit from single-agent administration. Searching for mechanisms of resistance, we observed that suppression of PI3K signaling results in induction of ER-dependent transcriptional activity, as demonstrated by changes in expression of genes containing ER-binding sites and increased occupancy by the ER of promoter regions of up-regulated genes. Furthermore, expression of ESR1 mRNA and ER protein were also increased upon PI3K inhibition. These changes in gene expression were confirmed in vivo in xenografts and patient-derived models and in tumors from patients undergoing treatment with the PI3Kα inhibitor BYL719. The observed effects on transcription were enhanced by the addition of estradiol and suppressed by the anti-ER therapies fulvestrant and tamoxifen. Fulvestrant markedly sensitized ER-positive tumors to PI3Kα inhibition, resulting in major tumor regressions in vivo. We propose that increased ER transcriptional activity may be a reactive mechanism that limits the activity of PI3K inhibitors and that combined PI3K and ER inhibition is a rational approach to target these tumors.
PMID: 25877889
ISSN: 1946-6242
CID: 4134442
Convergent loss of PTEN leads to clinical resistance to a PI(3)Kα inhibitor
Juric, Dejan; Castel, Pau; Griffith, Malachi; Griffith, Obi L; Won, Helen H; Ellis, Haley; Ebbesen, Saya H; Ainscough, Benjamin J; Ramu, Avinash; Iyer, Gopa; Shah, Ronak H; Huynh, Tiffany; Mino-Kenudson, Mari; Sgroi, Dennis; Isakoff, Steven; Thabet, Ashraf; Elamine, Leila; Solit, David B; Lowe, Scott W; Quadt, Cornelia; Peters, Malte; Derti, Adnan; Schegel, Robert; Huang, Alan; Mardis, Elaine R; Berger, Michael F; Baselga, José; Scaltriti, Maurizio
Broad and deep tumour genome sequencing has shed new light on tumour heterogeneity and provided important insights into the evolution of metastases arising from different clones. There is an additional layer of complexity, in that tumour evolution may be influenced by selective pressure provided by therapy, in a similar fashion to that occurring in infectious diseases. Here we studied tumour genomic evolution in a patient (index patient) with metastatic breast cancer bearing an activating PIK3CA (phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha, PI(3)Kα) mutation. The patient was treated with the PI(3)Kα inhibitor BYL719, which achieved a lasting clinical response, but the patient eventually became resistant to this drug (emergence of lung metastases) and died shortly thereafter. A rapid autopsy was performed and material from a total of 14 metastatic sites was collected and sequenced. All metastatic lesions, when compared to the pre-treatment tumour, had a copy loss of PTEN (phosphatase and tensin homolog) and those lesions that became refractory to BYL719 had additional and different PTEN genetic alterations, resulting in the loss of PTEN expression. To put these results in context, we examined six other patients also treated with BYL719. Acquired bi-allelic loss of PTEN was found in one of these patients, whereas in two others PIK3CA mutations present in the primary tumour were no longer detected at the time of progression. To characterize our findings functionally, we examined the effects of PTEN knockdown in several preclinical models (both in cell lines intrinsically sensitive to BYL719 and in PTEN-null xenografts derived from our index patient), which we found resulted in resistance to BYL719, whereas simultaneous PI(3)K p110β blockade reverted this resistance phenotype. We conclude that parallel genetic evolution of separate metastatic sites with different PTEN genomic alterations leads to a convergent PTEN-null phenotype resistant to PI(3)Kα inhibition.
PMCID:4326538
PMID: 25409150
ISSN: 1476-4687
CID: 4604342
Rationale-based therapeutic combinations with PI3K inhibitors in cancer treatment
Castel, Pau; Toska, Eneda; Zumsteg, Zachary S; Carmona, F Javier; Elkabets, Moshe; Bosch, Ana; Scaltriti, Maurizio
The PI3K/AKT/mTOR signaling is important for cell proliferation, survival, and metabolism. Hyperactivation of this pathway is one of the most common signaling abnormalities observed in cancer and a substantial effort has recently been made to develop molecules targeting this signaling cascade. However, it is becoming evident that PI3K inhibitors used as single agents do not elicit dramatic or durable responses. Given the numerous mechanisms mediating intrinsic and acquired resistance to these agents, hypothesis-based combinatorial strategies are probably needed to fully exploit their antitumor activity. In the first part of this review, we briefly dissect the PI3K/AKT/mTOR axis and list the most advanced compounds targeting different nodes of this cascade. The second part focuses on what we believe to be the most promising rationale-based therapeutic combinations with PI3K/AKT/mTOR inhibitors in solid tumors, with special emphasis on breast cancer.
PMCID:4904898
PMID: 27308344
ISSN: 2372-3556
CID: 4604382
Antagonism of EGFR and HER3 enhances the response to inhibitors of the PI3K-Akt pathway in triple-negative breast cancer
Tao, Jessica J; Castel, Pau; Radosevic-Robin, Nina; Elkabets, Moshe; Auricchio, Neil; Aceto, Nicola; Weitsman, Gregory; Barber, Paul; Vojnovic, Borivoj; Ellis, Haley; Morse, Natasha; Viola-Villegas, Nerissa Therese; Bosch, Ana; Juric, Dejan; Hazra, Saswati; Singh, Sharat; Kim, Phillip; Bergamaschi, Anna; Maheswaran, Shyamala; Ng, Tony; Penault-Llorca, Frédérique; Lewis, Jason S; Carey, Lisa A; Perou, Charles M; Baselga, José; Scaltriti, Maurizio
Both abundant epidermal growth factor receptor (EGFR or ErbB1) and high activity of the phosphatidylinositol 3-kinase (PI3K)-Akt pathway are common and therapeutically targeted in triple-negative breast cancer (TNBC). However, activation of another EGFR family member [human epidermal growth factor receptor 3 (HER3) (or ErbB3)] may limit the antitumor effects of these drugs. We found that TNBC cell lines cultured with the EGFR or HER3 ligand EGF or heregulin, respectively, and treated with either an Akt inhibitor (GDC-0068) or a PI3K inhibitor (GDC-0941) had increased abundance and phosphorylation of HER3. The phosphorylation of HER3 and EGFR in response to these treatments was reduced by the addition of a dual EGFR and HER3 inhibitor (MEHD7945A). MEHD7945A also decreased the phosphorylation (and activation) of EGFR and HER3 and the phosphorylation of downstream targets that occurred in response to the combination of EGFR ligands and PI3K-Akt pathway inhibitors. In culture, inhibition of the PI3K-Akt pathway combined with either MEHD7945A or knockdown of HER3 decreased cell proliferation compared with inhibition of the PI3K-Akt pathway alone. Combining either GDC-0068 or GDC-0941 with MEHD7945A inhibited the growth of xenografts derived from TNBC cell lines or from TNBC patient tumors, and this combination treatment was also more effective than combining either GDC-0068 or GDC-0941 with cetuximab, an EGFR-targeted antibody. After therapy with EGFR-targeted antibodies, some patients had residual tumors with increased HER3 abundance and EGFR/HER3 dimerization (an activating interaction). Thus, we propose that concomitant blockade of EGFR, HER3, and the PI3K-Akt pathway in TNBC should be investigated in the clinical setting.
PMCID:4283215
PMID: 24667376
ISSN: 1937-9145
CID: 4604332
Combined blockade of PI3K/AKT and EGFR/HER3 enhances antitumor activity in triple negative breast cancer [Meeting Abstract]
Scaltriti, Maurizio; Tao, Jessica; Juric, Dejan; Auricchio, Neil; Castel, Pau; Morse, Natasha; Kim, Phillip; Singh, Sharat; Hazra, Saswati; Hembrough, Todd; Burrows, Jon; Baselga, Jose
ISI:000331220604076
ISSN: 0008-5472
CID: 4604542