Searched for: in-biosketch:yes
person:cerrom01
Exercise: A Risky Subject in Arrhythmogenic Cardiomyopathy [Editorial]
Cerrone, Marina
PMID: 29909403
ISSN: 2047-9980
CID: 3157562
Controversies in Brugada syndrome
Cerrone, Marina
The Brugada syndrome is an inherited channelopathy associated with increased risk of ventricular arrhythmias and sudden death, often occurring during sleep or resting conditions. Although this entity has been described more than 20 years ago, it remains one of the most debated among channelopathies, with several open questions on its genetic substrate, arrhythmia mechanisms, and clinical management. Studies on the genetics and physiopathology bases of the Brugada syndrome have opened novel investigative pathways and concepts that are now entering the field of cardiovascular genetics and are applied to other inherited arrhythmias. In this perspective, Brugada syndrome can be seen as an example on how basic science discoveries have influenced clinical management and led to novel therapeutic approaches.
PMID: 29254832
ISSN: 1873-2615
CID: 2894062
Pleiotropic Phenotypes Associated With PKP2 Variants
Novelli, Valeria; Malkani, Kabir; Cerrone, Marina
Plakophilin-2 (PKP2) is a component of the desmosome complex and known for its role in cell-cell adhesion. Recently, alterations in the Pkp2 gene have been associated with different inherited cardiac conditions including Arrythmogenic Cardiomyopathy (ACM or ARVC), Brugada syndrome (BrS), and idiopathic ventricular fibrillation to name the most relevant. However, the assessment of pathogenicity regarding the genetic variations associated with Pkp2 is still a challenging task: the gene has a positive Residual Variation Intolerance Score and the potential deleterious role of several of its variants has been disputed. Limitations in facilitating interpretation and annotations of these variants are seen in the lack of segregation and clinical data in the control population of reference. In this review, we will provide a summary of all the currently available genetic information related to the Pkp2 gene, including different phenotypes, ClinVar annotations and data from large control database. Our goal is to provide a literature review that could help clinicians and geneticists in interpreting the role of Pkp2 variants in the context of heritable sudden death syndromes. Limitations of current algorithms and data repositories will be discussed.
PMCID:6305316
PMID: 30619891
ISSN: 2297-055x
CID: 3579582
Blockade of the Adenosine 2A Receptor Mitigates the Cardiomyopathy Induced by Loss of Plakophilin-2 Expression
Cerrone, Marina; van Opbergen, Chantal J M; Malkani, Kabir; Irrera, Natasha; Zhang, Mingliang; Van Veen, Toon A B; Cronstein, Bruce; Delmar, Mario
Background: Mutations in plakophilin-2 (PKP2) are the most common cause of familial Arrhythmogenic Right Ventricular Cardiomyopathy, a disease characterized by ventricular arrhythmias, sudden death, and progressive fibrofatty cardiomyopathy. The relation between loss of PKP2 expression and structural cardiomyopathy remains under study, though paracrine activation of pro-fibrotic intracellular signaling cascades is a likely event. Previous studies have indicated that ATP release into the intracellular space, and activation of adenosine receptors, can regulate fibrosis in various tissues. However, the role of this mechanism in the heart, and in the specific case of a PKP2-initiated cardiomyopathy, remains unexplored. Objectives: To investigate the role of ATP/adenosine in the progression of a PKP2-associated cardiomyopathy. Methods: HL1 cells were used to study PKP2- and Connexin43 (Cx43)-dependent ATP release. A cardiac-specific, tamoxifen-activated PKP2 knock-out murine model (PKP2cKO) was used to define the effect of adenosine receptor blockade on the progression of a PKP2-dependent cardiomyopathy. Results: HL1 cells silenced for PKP2 showed increased ATP release compared to control. Knockout of Cx43 in the same cells blunted the effect. PKP2cKO transcriptomic data revealed overexpression of genes involved in adenosine-receptor cascades. Istradefylline (an adenosine 2A receptor blocker) tempered the progression of fibrosis and mechanical failure observed in PKP2cKO mice. In contrast, PSB115, a blocker of the 2B adenosine receptor, showed opposite effects. Conclusion: Paracrine adenosine 2A receptor activation contributes to the progression of fibrosis and impaired cardiac function in animals deficient in PKP2. Given the limitations of the animal model, translation to the case of patients with PKP2 deficiency needs to be done with caution.
PMCID:6290386
PMID: 30568602
ISSN: 1664-042x
CID: 3556692
Plakophilin-2 is required for transcription of genes that control calcium cycling and cardiac rhythm
Cerrone, Marina; Montnach, Jerome; Lin, Xianming; Zhao, Yan-Ting; Zhang, Mingliang; Agullo-Pascual, Esperanza; Leo-Macias, Alejandra; Alvarado, Francisco J; Dolgalev, Igor; Karathanos, Thomas V; Malkani, Kabir; Van Opbergen, Chantal J M; van Bavel, Joanne J A; Yang, Hua-Qian; Vasquez, Carolina; Tester, David; Fowler, Steven; Liang, Fengxia; Rothenberg, Eli; Heguy, Adriana; Morley, Gregory E; Coetzee, William A; Trayanova, Natalia A; Ackerman, Michael J; van Veen, Toon A B; Valdivia, Hector H; Delmar, Mario
Plakophilin-2 (PKP2) is a component of the desmosome and known for its role in cell-cell adhesion. Mutations in human PKP2 associate with a life-threatening arrhythmogenic cardiomyopathy, often of right ventricular predominance. Here, we use a range of state-of-the-art methods and a cardiomyocyte-specific, tamoxifen-activated, PKP2 knockout mouse to demonstrate that in addition to its role in cell adhesion, PKP2 is necessary to maintain transcription of genes that control intracellular calcium cycling. Lack of PKP2 reduces expression of Ryr2 (coding for Ryanodine Receptor 2), Ank2 (coding for Ankyrin-B), Cacna1c (coding for CaV1.2) and Trdn (coding for triadin), and protein levels of calsequestrin-2 (Casq2). These factors combined lead to disruption of intracellular calcium homeostasis and isoproterenol-induced arrhythmias that are prevented by flecainide treatment. We propose a previously unrecognized arrhythmogenic mechanism related to PKP2 expression and suggest that mutations in PKP2 in humans may cause life-threatening arrhythmias even in the absence of structural disease.It is believed that mutations in desmosomal adhesion complex protein plakophilin 2 (PKP2) cause arrhythmia due to loss of cell-cell communication. Here the authors show that PKP2 controls the expression of proteins involved in calcium cycling in adult mouse hearts, and that lack of PKP2 can cause arrhythmia in a structurally normal heart.
PMCID:5524637
PMID: 28740174
ISSN: 2041-1723
CID: 2653852
Efficacy of Flecainide in the Treatment of Catecholaminergic Polymorphic Ventricular Tachycardia: A Randomized Clinical Trial
Kannankeril, Prince J; Moore, Jeremy P; Cerrone, Marina; Priori, Silvia G; Kertesz, Naomi J; Ro, Pamela S; Batra, Anjan S; Kaufman, Elizabeth S; Fairbrother, David L; Saarel, Elizabeth V; Etheridge, Susan P; Kanter, Ronald J; Carboni, Michael P; Dzurik, Matthew V; Fountain, Darlene; Chen, Heidi; Ely, E Wesley; Roden, Dan M; Knollmann, Bjorn C
Importance: Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a potentially lethal genetic arrhythmia syndrome characterized by polymorphic ventricular tachycardia with physical or emotional stress, for which current therapy with beta-blockers is incompletely effective. Flecainide acetate directly suppresses sarcoplasmic reticulum calcium release-the cellular mechanism responsible for triggering ventricular arrhythmias in CPVT-but has never been assessed prospectively. Objective: To determine whether flecainide dosed to therapeutic levels and added to beta-blocker therapy is superior to beta-blocker therapy alone for the prevention of exercise-induced arrhythmias in CPVT. Design, Setting, and Participants: This investigator-initiated, multicenter, single-blind, placebo-controlled crossover clinical trial was conducted from December 19, 2011, through December 29, 2015, with a midtrial protocol change at 10 US sites. Patients with a clinical diagnosis of CPVT and an implantable cardioverter-defibrillator underwent a baseline exercise test while receiving maximally tolerated beta-blocker therapy that was continued throughout the trial. Patients were then randomized to treatment A (flecainide or placebo) for 3 months, followed by exercise testing. After a 1-week washout period, patients crossed over to treatment B (placebo or flecainide) for 3 months, followed by exercise testing. Interventions: Patients received oral flecainide or placebo twice daily, with the dosage guided by trough serum levels. Main Outcomes and Measures: The primary end point of ventricular arrhythmias during exercise was compared between the flecainide and placebo arms. Exercise tests were scored on an ordinal scale of worst ventricular arrhythmia observed (0 indicates no ectopy; 1, isolated premature ventricular beats; 2, bigeminy; 3, couplets; and 4, nonsustained ventricular tachycardia). Results: Of 14 patients (7 males and 7 females; median age, 16 years [interquartile range, 15.0-22.5 years]) randomized, 13 completed the study. The median baseline exercise test score was 3.0 (range, 0-4), with no difference noted between the baseline and placebo (median, 2.5; range, 0-4) exercise scores. The median ventricular arrhythmia score during exercise was significantly reduced by flecainide (0 [range, 0-2] vs 2.5 [range, 0-4] for placebo; P < .01), with complete suppression observed in 11 of 13 patients (85%). Overall and serious adverse events did not differ between the flecainide and placebo arms. Conclusions and Relevance: In this randomized clinical trial of patients with CPVT, flecainide plus beta-blocker significantly reduced ventricular ectopy during exercise compared with placebo plus beta-blocker and beta-blocker alone. Trial Registration: clinicaltrials.gov Identifier: NCT01117454.
PMCID:5548393
PMID: 28492868
ISSN: 2380-6591
CID: 2549122
Loss of Plakophilin-2 expression causes alternative splicing misregulation. A new component in the molecular substrate of arrhythmogenic right ventricular cardiomyopathy (ARVC) [Meeting Abstract]
Montnach, J; Van, Opbergen C; Xianming, L; Zhang, M; Dolgalev, I; Heguy, A; Van, Veen T; Delmar, M; Cerrone, M
Background and Rationale: Mutations in Plakophilin-2 (PKP2) are the most common cause of ARVC, an inherited disease characterized by fibro- or fibrofatty infiltration of RV predominance, ventricular arrhythmias and sudden death in the young. The relation between PKP2 expression and the heart transcriptome in vivo, is unknown. Furthermore, while splicing misregulation has been associated with other inherited diseases, PKP2-dependent exon usage differences remain unexplored. We generated a murine line of cardiac-restricted, tamoxifen activated PKP2 deficiency ("PKP2-cKO") and defined PKP2- dependent exon usage in adult non-failing hearts. Methods and Results: The first disease manifestation was an increase in RV area, detected by echocardiography 14 days after tamoxifen injection (14 days post-injection or "dpi"), followed by marked RV dilation and reparative fibrosis (21 dpi), then bi-ventricular dilated cardiomyopathy (28 dpi), heart failure and death (30-50 dpi). To capture the earliest molecular events, hearts 14 dpi were used for RNAseq and exon usage. Comparing RV vs LV revealed minor changes in transcript abundance, but significant differences in alternative splicing (AS) program. We found ~75% of differentially spliced exons flanked by sequences that bind RBFox2, an RNA-binding protein that acts as central AS regulator of the adult heart, and that is necessary to maintain cardiac structure. Western blot analysis at 14 dpi and thereafter showed reduced abundance of RBFox2. RNAseq at 21 dpi showed that in addition to RBFox2, transcripts were reduced for RBFox1, MBNL1, MBNL2 and RBM20 (also molecules that control the AS program). Exon usage analysis at 21 dpi identified massive AS misregulation, similar to that of a failing heart, even though ejection fraction at this stage was ~50%. Misregulated genes included several involved in electrical rhythm and intracellular calcium homeostasis. Conclusion: We generated a model of PKP2-dependent ARVC. Our studies point to a previously unrecognized association between a desmosomal molecule, a splicing regulator, and the control of electrical and mechanical function. AS misregulation may be a substrate for sudden unexpected arrhythmic death in the young
EMBASE:617041340
ISSN: 1556-3871
CID: 2620942
Discerning From the Good, the Bad, and the Ugly [Editorial]
Cerrone, Marina
PMID: 28404608
ISSN: 1941-3084
CID: 2527862
GENETIC TESTING FOR DIAGNOSIS OF PROGRESSIVE CARDIAC CONDUCTION DISEASE [Meeting Abstract]
Guandalini, Gustavo; Park, David; Pan, Stephen; Barbhaiya, Chirag; Axel, Leon; Fowler, Steven; Cerrone, Marina; Chinitz, Larry
ISI:000397342303205
ISSN: 1558-3597
CID: 2528942
Multilevel analyses of SCN5A mutations in arrhythmogenic right ventricular dysplasia/cardiomyopathy suggest non-canonical mechanisms for disease pathogenesis
Te Riele, Anneline S J M; Agullo-Pascual, Esperanza; James, Cynthia A; Leo-Macias, Alejandra; Cerrone, Marina; Zhang, Mingliang; Lin, Xianming; Lin, Bin; Sobreira, Nara L; Amat-Alarcon, Nuria; Marsman, Roos F; Murray, Brittney; Tichnell, Crystal; van der Heijden, Jeroen F; Dooijes, Dennis; van Veen, Toon A B; Tandri, Harikrishna; Fowler, Steven J; Hauer, Richard N W; Tomaselli, Gordon; van den Berg, Maarten P; Taylor, Matthew R G; Brun, Francesca; Sinagra, Gianfranco; Wilde, Arthur A M; Mestroni, Luisa; Bezzina, Connie R; Calkins, Hugh; Peter van Tintelen, J; Bu, Lei; Delmar, Mario; Judge, Daniel P
AIMS: Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy (ARVD/C) is often associated with desmosomal mutations. Recent studies suggest an interaction between the desmosome and sodium channel protein Nav1.5. We aimed to determine the prevalence and biophysical properties of mutations in SCN5A (the gene encoding Nav1.5) in ARVD/C. METHODS AND RESULTS: We performed whole-exome sequencing in six ARVD/C patients (33% male, 38.2 +/- 12.1 years) without a desmosomal mutation. We found a rare missense variant (p.Arg1898His; R1898H) in SCN5A in one patient. We generated induced pluripotent stem cell-derived cardiomyocytes (hIPSC-CMs) from the patient's peripheral blood mononuclear cells. The variant was then corrected (R1898R) using Clustered Regularly Interspaced Short Palindromic Repeats/Cas9 technology, allowing us to study the impact of the R1898H substitution in the same cellular background. Whole-cell patch clamping revealed a 36% reduction in peak sodium current (P = 0.002); super-resolution fluorescence microscopy showed reduced abundance of NaV1.5 (P = 0.005) and N-Cadherin (P = 0.026) clusters at the intercalated disc. Subsequently, we sequenced SCN5A in an additional 281 ARVD/C patients (60% male, 34.8 +/- 13.7 years, 52% desmosomal mutation-carriers). Five (1.8%) subjects harboured a putatively pathogenic SCN5A variant (p.Tyr416Cys, p.Leu729del, p.Arg1623Ter, p.Ser1787Asn, and p.Val2016Met). SCN5A variants were associated with prolonged QRS duration (119 +/- 15 vs. 94 +/- 14 ms, P < 0.01) and all SCN5A variant carriers had major structural abnormalities on cardiac imaging. CONCLUSIONS: Almost 2% of ARVD/C patients harbour rare SCN5A variants. For one of these variants, we demonstrated reduced sodium current, Nav1.5 and N-Cadherin clusters at junctional sites. This suggests that Nav1.5 is in a functional complex with adhesion molecules, and reveals potential non-canonical mechanisms by which Nav1.5 dysfunction causes cardiomyopathy.
PMCID:5220677
PMID: 28069705
ISSN: 1755-3245
CID: 2400672