Searched for: in-biosketch:yes
person:chaom01
Oxytocin enables maternal behavior by balancing cortical inhibition [Meeting Abstract]
Marlin, B J; Mitre, M; Carcea, L; D'Amour, J A; Schiavo, J; Chao, M V; Froemke, R C
Background: Oxytocin is essential for social interactions and maternal behavior. However, little is known about how oxytocin modulates neural circuits to improve social and maternal outcomes. We describe a synaptic mechanism by which oxytocin enhances signal-to-noise ratio in left primary auditory cortex to improve mouse maternal behavior. Methods: We performed electrophysiological recordings, and used anatomical, optogenetic and behavioral techniques to examine the role of oxytocin in maternal behavior in wild-type C57BL/6 and Oxytocin-IRES-Cre mice. Results: Virgins females, who do not initially retrieve distressed pups, rapidly expressed retrieval behavior after receiving oxytocin under dam and pups co-housing conditions. Retrieval onset was accelerated in 20/36 mice receiving systemic oxytocin and in 5/7 mice receiving optogenetic stimulation (P=0.03, 0.05, respectively; Fisher's two-tailed exact test). To confirm regional sites of action subserving improved maternal behavior, we generated novel antibodies that bind to the mouse oxytocin receptor. Oxytocin receptors were preferentially expressed in the left auditory cortex (19% left cells, 14% right cells, n=21, P=0.001). Finally, we utilitzed in vivo whole-cell recordings to measure spiking/synaptic responses to pup calls. Pup call responses were lateralized, with co-tuned/temporally-precise responses in left auditory cortex of maternally-experienced but not maternal-naive adults. Pairing calls with oxytocin enhanced call-evoked responses in virgin dams by balancing the magnitude/ timing of inhibition with excitation, transitioning the auditory cortex from a virgin-like state to a maternal state. Conclusions: Our study provides a biological basis for the lateralization of vocal processing and emergence of experience-based social learning. These studies inform behavioral therapies involving oxytocin administration
EMBASE:72256862
ISSN: 0006-3223
CID: 2103542
Prefrontal neuronal integrity predicts symptoms and cognition in schizophrenia and is sensitive to genetic heterogeneity
Malaspina, Dolores; Kranz, Thorsten M; Heguy, Adriana; Harroch, Sheila; Mazgaj, Robert; Rothman, Karen; Berns, Adam; Hasan, Sumya; Antonius, Daniel; Goetz, Raymond; Lazar, Mariana; Chao, Moses V; Gonen, Oded
Schizophrenia is a genetically complex syndrome with substantial inter-subject variability in multiple domains. Person-specific measures to resolve its heterogeneity could focus on the variability in prefrontal integrity, which this study indexed as relative rostralization within the anterior cingulate cortex (ACC). Twenty-two schizophrenia cases and 11 controls underwent rigorous diagnostic procedures, symptom assessments (PANSS, Deficit Syndrome Scale) and intelligence testing. All underwent multivoxel MRSI at 3T to measure concentrations of the neuronal-specific biomarker N-acetylaspartate (NAA) in all of the voxels of the ACC. The concentrations of NAA were separately calculated and then compared across the rostral and caudal subregions to generate a rostralization ratio, which was examined with respect to the study measures and to which cases carried a missense coding polymorphism in PTPRG, SCL39A13, TGM5, NTRK1 or ARMS/KIDINS220. Rostralization significantly differed between cases and controls (chi2=18.40, p<.0001). In cases, it predicted verbal intelligence (r=.469, p=.043) and trait negative symptoms (diminished emotional range (r=-.624, p=.010); curbed interests, r=-.558, p=.025). Rostralization was similar to controls for missense coding variants in TGM5 and was significantly greater than controls for the PTPRG variant carrier. This is the first study examining the utility of MRS metrics in describing pathological features at both group and person-specific levels. Rostralization predicted core illness features and differed based on which signaling genes were disrupted. While future studies in larger populations are needed, ACC rostralization appears to be a promising measure to reduce the heterogeneity of schizophrenia for genetic research and selecting cases for treatment studies.
PMCID:4894496
PMID: 26925801
ISSN: 1573-2509
CID: 2009242
Phenotypically distinct subtypes of psychosis accompany novel or rare variants in four different signaling genes
Kranz, Thorsten M; Berns, Adam; Shields, Jerry; Rothman, Karen; Walsh-Messinger, Julie; Goetz, Raymond R; Chao, Moses V; Malaspina, Dolores
BACKGROUND: Rare gene variants are important sources of schizophrenia vulnerability that likely interact with polygenic susceptibility loci. This study examined if novel or rare missense coding variants in any of four different signaling genes in sporadic schizophrenia cases were associated with clinical phenotypes in an exceptionally well-characterized sample. METHOD: Structured interviews, cognition, symptoms and life course features were assessed in 48 ethnically-diverse cases with psychosis who underwent targeted exome sequencing of PTPRG (Protein Tyrosine Phosphatase, Receptor Type G), SLC39A13 (Solute Carrier Family 39 (Zinc Transporter) Member 13), TGM5 (transglutaminase 5) and ARMS/KIDINS220 (Ankyrin repeat-rich membrane spanning protein or Kinase D-Interacting Substrate of 220kDa). Cases harboring rare missense coding polymorphisms or novel mutations in one or more of these genes were compared to other cases not carrying any rare missense coding polymorphisms or novel mutations in these genes and healthy controls. FINDINGS: Fifteen of 48 cases (31.25%) carried rare or novel missense coding variants in one or more of these genes. The subgroups significantly differed in important features, including specific working memory deficits for PTPRG (n=5); severe negative symptoms, global cognitive deficits and poor educational attainment, suggesting a developmental disorder, for SLC39A13 (n=4); slow processing speed, childhood attention deficit disorder and milder symptoms for TGM5 (n=4); and global cognitive deficits with good educational attainment suggesting neurodegeneration for ARMS/KIDINS220 (n=5). Case vignettes are included in the appendix. INTERPRETATION: Genes prone to missense coding polymorphisms and/or mutations in sporadic cases may highlight influential genes for psychosis and illuminate heterogeneous pathways to schizophrenia. Ethnicity appears less important at the level of genetic variability. The sequence variations that potentially alter the function of specific genes or their signaling partners may contribute to particular subtypes of psychosis. This approach may be applicable to other complex disorders.
PMCID:4856793
PMID: 27211562
ISSN: 2352-3964
CID: 2114482
A New Population of Parvocellular Oxytocin Neurons Controlling Magnocellular Neuron Activity and Inflammatory Pain Processing
Eliava, Marina; Melchior, Meggane; Knobloch-Bollmann, H Sophie; Wahis, Jerome; da Silva Gouveia, Miriam; Tang, Yan; Ciobanu, Alexandru Cristian; Triana Del Rio, Rodrigo; Roth, Lena C; Althammer, Ferdinand; Chavant, Virginie; Goumon, Yannick; Gruber, Tim; Petit-Demouliere, Nathalie; Busnelli, Marta; Chini, Bice; Tan, Linette L; Mitre, Mariela; Froemke, Robert C; Chao, Moses V; Giese, Gunter; Sprengel, Rolf; Kuner, Rohini; Poisbeau, Pierrick; Seeburg, Peter H; Stoop, Ron; Charlet, Alexandre; Grinevich, Valery
Oxytocin (OT) is a neuropeptide elaborated by the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei. Magnocellular OT neurons of these nuclei innervate numerous forebrain regions and release OT into the blood from the posterior pituitary. The PVN also harbors parvocellular OT cells that project to the brainstem and spinal cord, but their function has not been directly assessed. Here, we identified a subset of approximately 30 parvocellular OT neurons, with collateral projections onto magnocellular OT neurons and neurons of deep layers of the spinal cord. Evoked OT release from these OT neurons suppresses nociception and promotes analgesia in an animal model of inflammatory pain. Our findings identify a new population of OT neurons that modulates nociception in a two tier process: (1) directly by release of OT from axons onto sensory spinal cord neurons and inhibiting their activity and (2) indirectly by stimulating OT release from SON neurons into the periphery.
PMCID:5679079
PMID: 26948889
ISSN: 1097-4199
CID: 2024162
Cleavage of p75 neurotrophin receptor is linked to Alzheimer's disease
Chao, M V
PMID: 26782055
ISSN: 1476-5578
CID: 1922092
Deconstructing brain-derived neurotrophic factor actions in adult brain circuits to bridge an existing informational gap in neuro-cell biology
Bowling, Heather; Bhattacharya, Aditi; Klann, Eric; Chao, Moses V
Brain-derived neurotrophic factor (BDNF) plays an important role in neurodevelopment, synaptic plasticity, learning and memory, and in preventing neurodegeneration. Despite decades of investigations into downstream signaling cascades and changes in cellular processes, the mechanisms of how BDNF reshapes circuits in vivo remain unclear. This informational gap partly arises from the fact that the bulk of studies into the molecular actions of BDNF have been performed in dissociated neuronal cultures, while the majority of studies on synaptic plasticity, learning and memory were performed in acute brain slices or in vivo. A recent study by Bowling-Bhattacharya et al., measured the proteomic changes in acute adult hippocampal slices following treatment and reported changes in proteins of neuronal and non-neuronal origin that may in concert modulate synaptic release and secretion in the slice. In this paper, we place these findings into the context of existing literature and discuss how they impact our understanding of how BDNF can reshape the brain.
PMCID:4828984
PMID: 27127458
ISSN: 1673-5374
CID: 2092682
A Distributed Network for Social Cognition Enriched for Oxytocin Receptors
Mitre, Mariela; Marlin, Bianca J; Schiavo, Jennifer K; Morina, Egzona; Norden, Samantha E; Hackett, Troy A; Aoki, Chiye J; Chao, Moses V; Froemke, Robert C
Oxytocin is a neuropeptide important for social behaviors such as maternal care and parent-infant bonding. It is believed that oxytocin receptor signaling in the brain is critical for these behaviors, but it is unknown precisely when and where oxytocin receptors are expressed or which neural circuits are directly sensitive to oxytocin. To overcome this challenge, we generated specific antibodies to the mouse oxytocin receptor and examined receptor expression throughout the brain. We identified a distributed network of female mouse brain regions for maternal behaviors that are especially enriched for oxytocin receptors, including the piriform cortex, the left auditory cortex, and CA2 of the hippocampus. Electron microscopic analysis of the cerebral cortex revealed that oxytocin receptors were mainly expressed at synapses, as well as on axons and glial processes. Functionally, oxytocin transiently reduced synaptic inhibition in multiple brain regions and enabled long-term synaptic plasticity in the auditory cortex. Thus modulation of inhibition may be a general mechanism by which oxytocin can act throughout the brain to regulate parental behaviors and social cognition. SIGNIFICANCE STATEMENT: Oxytocin is an important peptide hormone involved in maternal behavior and social cognition, but it has been unclear what elements of neural circuits express oxytocin receptors due to the paucity of suitable antibodies. Here, we developed new antibodies to the mouse oxytocin receptor. Oxytocin receptors were found in discrete brain regions and at cortical synapses for modulating excitatory-inhibitory balance and plasticity. These antibodies should be useful for future studies of oxytocin and social behavior.
PMCID:4764667
PMID: 26911697
ISSN: 1529-2401
CID: 1964812
BONLAC: A Combinatorial Proteomic Technique to Measure Stimulus-induced Translational Profiles in Brain Slices
Bowling, Heather; Bhattacharya, Aditi; Zhang, Guoan; Lebowitz, Joseph Z; Alam, Danyal; Smith, Peter T; Kirshenbaum, Kent; Neubert, Thomas A; Vogel, Christine; Chao, Moses V; Klann, Eric
Stimulus-triggered protein synthesis is critical for brain health and function. However, due to technical hurdles, de novo neuronal translation is predominantly studied in cultured cells, whereas electrophysiological and circuit analyses often are performed in brain slices. The different properties of these two experimental systems create an information gap about stimulus-induced alterations in the expression of new proteins in mature circuits. To address this, we adapted two existing techniques, BONCAT and SILAC, to a combined proteomic technique, BONLAC, for use in acute adult hippocampal slices. Using BDNF-induced protein synthesis as a proof of concept, we found alterations in expression of proteins involved in neurotransmission, trafficking, and cation binding that differed from those found in a similar screen in cultured neurons. Our results indicate important differences between cultured neurons and slices, and suggest that BONLAC could be used to dissect proteomic changes underlying synaptic events in adult circuits.
PMCID:4584208
PMID: 26205778
ISSN: 1873-7064
CID: 1684102
Neurotrophic-priming of glucocorticoid receptor signaling is essential for neuronal plasticity to stress and antidepressant treatment
Arango-Lievano, Margarita; Lambert, W Marcus; Bath, Kevin G; Garabedian, Michael J; Chao, Moses V; Jeanneteau, Freddy
Neurotrophins and glucocorticoids are robust synaptic modifiers, and deregulation of their activities is a risk factor for developing stress-related disorders. Low levels of brain-derived neurotrophic factor (BDNF) increase the desensitization of glucocorticoid receptors (GR) and vulnerability to stress, whereas higher levels of BDNF facilitate GR-mediated signaling and the response to antidepressants. However, the molecular mechanism underlying neurotrophic-priming of GR function is poorly understood. Here we provide evidence that activation of a TrkB-MAPK pathway, when paired with the deactivation of a GR-protein phosphatase 5 pathway, resulted in sustained GR phosphorylation at BDNF-sensitive sites that is essential for the transcription of neuronal plasticity genes. Genetic strategies that disrupted GR phosphorylation or TrkB signaling in vivo impaired the neuroplasticity to chronic stress and the effects of the antidepressant fluoxetine. Our findings reveal that the coordinated actions of BDNF and glucocorticoids promote neuronal plasticity and that disruption in either pathway could set the stage for the development of stress-induced psychiatric diseases.
PMCID:4697403
PMID: 26630005
ISSN: 1091-6490
CID: 1863502
Definition of a Bidirectional Activity-Dependent Pathway Involving BDNF and Narp
Mariga, Abigail; Glaser, Juliane; Mathias, Leo; Xu, Desheng; Xiao, Meifang; Worley, Paul; Ninan, Ipe; Chao, Moses V
One of the cardinal features of neural development and adult plasticity is the contribution of activity-dependent signaling pathways. However, the interrelationships between different activity-dependent genes are not well understood. The immediate early gene neuronal-activity-regulated pentraxin (NPTX2 or Narp) encodes a protein that has been associated with excitatory synaptogenesis, AMPA receptor aggregation, and the onset of critical periods. Here, we show that Narp is a direct transcriptional target of brain-derived neurotrophic factor (BDNF), another highly regulated activity-dependent gene involved in synaptic plasticity. Unexpectedly, Narp is bidirectionally regulated by BDNF. Acute BDNF withdrawal results in downregulation of Narp, whereas transcription of Narp is greatly enhanced by BDNF. Furthermore, our results show that BDNF directly regulates Narp to mediate glutamatergic transmission and mossy fiber plasticity. Hence, Narp serves as a significant epistatic target of BDNF to regulate synaptic plasticity during periods of dynamic activity.
PMCID:4681298
PMID: 26655895
ISSN: 2211-1247
CID: 1877622