Searched for: in-biosketch:yes
person:davidg04
The Human Ankyrin Insulator Supports Production of Therapeutic Levels of Adult Hemoglobin Following beta-Globin Gene Transfer in Hematopoietic Cells Derived From Thalassemic and Sickle Cell Patients [Meeting Abstract]
Breda, Laura; Casu, Carla; Bianchi, Nicoletta; Cartegni, Luca; Yazdanbakhsh, Karina; Manwani, Deepa; Mohandas, Narla; Jelinic, Petar; David, Gregory; Gardner, Lawrence B; Kleinert, Dorothy A; Prus, Eugenia; Fibach, Eitan; Giardina, Patricia; Gambari, Roberto; Rivella, Stefano
ISI:000299597102650
ISSN: 0006-4971
CID: 2249762
Ras-induced senescence and its physiological relevance in cancer
Dimauro, Teresa; David, Gregory
Activated oncogenes like Ras have traditionally been thought as promoting unrestrained proliferation; therefore, the concept of oncogene-induced senescence has been, and still is, controversial. The counter-intuitive notion that activation of oncogenes leads to the prevention of cellular proliferation has initially been fueled by in vitro studies using ectopic expression of activated Ras in primary fibroblasts. While these initial studies demonstrated unambiguously the existence of a new type of cellular senescence, induced by oncogenes in an ex-vivo system, questions were raised about the physiological relevance of this process. Indeed, recent technical advances in mouse modeling for cancer have suggested that the occurrence of Ras-induced senescence is highly dependent on the cellular context, as well as the level of expression of activated Ras, and may not be pertinent to the study of human cancer initiation and/or progression. However, our increased knowledge of the molecular basis for cellular senescence has led to a better understanding of the molecular events modulating cancer progression in vivo. Recent studies have not only clearly established the incidence of cellular senescence in pre-neoplasic lesions, but also its role as a potential tumor-suppressor mechanism in vivo. Here, we review the recent and exciting new findings regarding the physiological relevance of Ras-induced senescence, and discuss their implications in terms of cancer therapy
PMCID:4023163
PMID: 20718709
ISSN: 1873-5576
CID: 138210
The Mammalian sin3 proteins are required for muscle development and sarcomere specification
van Oevelen, Chris; Bowman, Christopher; Pellegrino, Jessica; Asp, Patrik; Cheng, Jemmie; Parisi, Fabio; Micsinai, Mariann; Kluger, Yuval; Chu, Alphonse; Blais, Alexandre; David, Gregory; Dynlacht, Brian D
The highly related mammalian Sin3A and Sin3B proteins provide a versatile platform for chromatin-modifying activities. Sin3-containing complexes play a role in gene repression through deacetylation of nucleosomes. Here, we explore a role for Sin3 in myogenesis by examining the phenotypes resulting from acute somatic deletion of both isoforms in vivo and from primary myotubes in vitro. Myotubes ablated for Sin3A alone, but not Sin3B, displayed gross defects in sarcomere structure that were considerably enhanced upon simultaneous ablation of both isoforms. Massively parallel sequencing of Sin3A- and Sin3B-bound genomic loci revealed a subset of target genes directly involved in sarcomere function that are positively regulated by Sin3A and Sin3B proteins. Both proteins were coordinately recruited to a substantial number of genes. Interestingly, depletion of Sin3B led to compensatory increases in Sin3A recruitment at certain target loci, but Sin3B was never found to compensate for Sin3A loss. Thus, our analyses describe a novel transcriptional role for Sin3A and Sin3B proteins associated with maintenance of differentiated muscle cells
PMCID:3004272
PMID: 20956564
ISSN: 1098-5549
CID: 114827
Sin3B expression is required for cellular senescence and is up-regulated upon oncogenic stress
Grandinetti, Kathryn B; Jelinic, Petar; DiMauro, Teresa; Pellegrino, Jessica; Fernandez Rodriguez, Ruben; Finnerty, Patricia M; Ruoff, Rachel; Bardeesy, Nabeel; Logan, Susan K; David, Gregory
Serial passage of primary mammalian cells or strong mitogenic signals induce a permanent exit from the cell cycle called senescence. A characteristic of senescent cells is the heterochromatinization of loci encoding pro-proliferative genes, leading to their transcriptional silencing. Senescence is thought to represent a defense mechanism against uncontrolled proliferation and cancer. Consequently, genetic alterations that allow senescence bypass are associated with susceptibility to oncogenic transformation. We show that fibroblasts genetically inactivated for the chromatin-associated Sin3B protein are refractory to replicative and oncogene-induced senescence. Conversely, overexpression of Sin3B triggers senescence and the formation of senescence-associated heterochromatic foci. Although Sin3B is strongly up-regulated upon oncogenic stress, decrease in expression of Sin3B is associated with tumor progression in vivo, suggesting that expression of Sin3B may represent a barrier against transformation. Together, these results underscore the contribution of senescence in tumor suppression and suggest that expression of chromatin modifiers is modulated at specific stages of cellular transformation. Consequently, these findings suggest that modulation of Sin3B-associated activities may represent new therapeutic opportunities for treatment of cancers
PMCID:2782780
PMID: 19654306
ISSN: 1538-7445
CID: 101640
Chromatin modifications: The driving force of senescence and aging?
Dimauro, Teresa; David, Gregory
An emerging field of investigation in the search for treatment of human disease is the modulation of chromatin modifications. Chromatin modifications impart virtually all processes occurring in the mammalian nucleus, from regulation of transcription to genomic stability and nuclear high order organization. It has been well recognized that, as the mammalian cell ages, its chromatin structure evolves, both at a global level and at specific loci. While these observations are mostly correlative, recent technical developments allowing loss-of-function experiments and genome-wide approaches have permitted the identification of a causal relationship between specific changes in chromatin structure and the aging phenotype. Here we review the evidence pointing to the modulation of chromatin structure as a potential driving force of cellular aging in mammals
PMCID:2806002
PMID: 20157508
ISSN: 1945-4589
CID: 107286
Sin3B: an essential regulator of chromatin modifications at E2F target promoters during cell cycle withdrawal
Grandinetti, Kathryn B; David, Gregory
Efficient and accurate cell cycle exit is intimately linked to cellular differentiation, and by inference, to the prevention of tumorigenesis. Perhaps the most important axis of control for this process involves the interactions of the E2F family of DNA binding proteins with the retinoblastoma (Rb) and Rb-related 'pocket protein' (p107 and p130) family of tumor suppressors. Not surprisingly, alterations in this pathway are present in a large number of human malignancies. The molecular basis for the controls exercised by the Rb family of proteins has been widely investigated, but is still not completely understood. Elegant in vitro studies had previously suggested the participation of histone deacetylase (HDAC)-associated Sin3B in E2F-mediated repression. Using genetically modified mice, we have recently uncovered a role for the Sin3B protein as a specific and essential actor in promoting cell cycle exit via the E2F-Rb pathway. We demonstrated its absolute requirement not only for cell cycle exit in vitro and in vivo, but also for biological processes linked to cellular differentiation. These observations strongly suggest that Sin3B plays an essential role in coordinating the chromatin modifying activities required for the transient repression of pro-proliferation genes in quiescence, as well as stable silencing of these genes upon terminal differentiation
PMID: 18469515
ISSN: 1551-4005
CID: 86646
Specific requirement of the chromatin modifier mSin3B in cell cycle exit and cellular differentiation
David, Gregory; Grandinetti, Kathryn B; Finnerty, Patricia M; Simpson, Natalie; Chu, Gerald C; Depinho, Ronald A
The Sin3-histone deacetylase (HDAC) corepressor complex is conserved from yeast to humans. Mammals possess two highly related Sin3 proteins, mSin3A and mSin3B, which serve as scaffolds tethering HDAC enzymatic activity, and numerous sequence-specific transcription factors to enable local chromatin regulation at specific gene targets. Despite broad overlapping expression of mSin3A and mSin3B, mSin3A is cell-essential and vital for early embryonic development. Here, genetic disruption of mSin3B reveals a very different phenotype characterized by the survival of cultured cells and lethality at late stages of embryonic development with defective differentiation of multiple lineages-phenotypes that are strikingly reminiscent of those associated with loss of retinoblastoma family members or E2F transcriptional repressors. Additionally, we observe that, whereas mSin3B(-/-) cells cycle normally under standard growth conditions, they show an impaired ability to exit the cell cycle with limiting growth factors. Correspondingly, mSin3B interacts physically with the promoters of known E2F target genes, and its deficiency is associated with derepression of these gene targets in vivo. Together, these results reveal a critical role for mSin3B in the control of cell cycle exit and terminal differentiation in mammals and establish contrasting roles for the mSin3 proteins in the growth and development of specific lineages
PMCID:2393767
PMID: 18332431
ISSN: 1091-6490
CID: 78025
The F-box protein Fbl10 is a novel transcriptional repressor of c-Jun
Koyama-Nasu, Ryo; David, Gregory; Tanese, Naoko
c-Jun is a component of the heterodimeric transcription factor AP-1 that is rapidly activated in response to ultraviolet light (UV). In unstressed cells, c-Jun activity is negatively regulated by transcriptional repressor complexes. Here we show that the F-box protein Fbl10/JHDM1B interacts with c-Jun and represses c-Jun-mediated transcription. Chromatin-immunoprecipitation assays demonstrate that Fbl10 is present at the c-jun promoter, and that c-Jun is required for the recruitment of Fbl10. Fbl10 binds to the unmethylated CpG sequences in the c-jun promoter through the CxxC zinc finger and tethers transcriptional repressor complexes. Suppression of Fbl10 expression by RNA interference (RNAi) induces transcription of c-jun and other c-Jun-target genes, and causes an aberrant cell-cycle progression and increased UV-induced cell death. Furthermore, Fbl10 protein and messenger RNA are downregulated in response to UV in an inverse correlation with c-Jun. Taken together, our results demonstrate that Fbl10 is a key regulator of c-Jun function
PMID: 17704768
ISSN: 1465-7392
CID: 75366
Haploinsufficiency of the mSds3 chromatin regulator promotes chromosomal instability and cancer only upon complete neutralization of p53
David, G; Dannenberg, J-H; Simpson, N; Finnerty, P M; Miao, L; Turner, G M; Ding, Z; Carrasco, R; Depinho, R A
The mSin3 corepressor complex has been linked to diverse cancer signaling pathways through its capacity to regulate target gene expression via chromatin modification. mSds3, a cell essential gene, is a key component of the mSin3 complex serving to maintain its inherent histone deacetylase activity. mSds3 also serves an essential role in the establishment of pericentric heterochromatin, and genetic ablation of mSds3 results in chromosome missegregation. In contrast, mSin3A nullizygous cells show normal chromosome dynamics and cytogenetic profiles. The integral role of mSds3 in controlling chromosome segregation and mSin3-regulated transcriptional networks prompted efforts to determine the neoplastic impact of loss of one copy of mSds3 or mSin3A. In particular, we assessed whether loss of one copy of mSds3, alone or in combination with p53 mutation, results in aneuploidy and promotes a cancer-prone condition in the mouse. We observe that, in a p53 null background, loss of one mSds3 allele results in accelerated tumor onset and increased tumor burden. Notably, these mSds3(+/-) p53(-/-) tumors exhibit a more complex cytogenetic profile characterized by marked aneuploidy and centromeric associations. The presence of even one copy of p53 is sufficient to suppress the accelerated tumorigenesis in mSds3(+/-) mice, consistent with a key role for p53 in monitoring mitotic fidelity. These observations with Sds3 mutant mice contrast with mSin3A(+/-) p53(-/-) mice, which do not show an accelerated or increased tumor incidence relative to mSin3A(+/+)p53(-/-) controls, correlating with the absence of aneuploidy detected upon mSin3A genetic inactivation. This genetic study establishes that the capacity of mSds3 to cooperate with p53 deficiency in cancer predisposition relates to its specific role in chromosome segregation, rather than its central role in maintaining a functional mSin3A complex.
PMID: 16767157
ISSN: 0950-9232
CID: 464122
mSin3A corepressor regulates diverse transcriptional networks governing normal and neoplastic growth and survival
Dannenberg, Jan-Hermen; David, Gregory; Zhong, Sheng; van der Torre, Jaco; Wong, Wing H; Depinho, Ronald A
mSin3A is a core component of a large multiprotein corepressor complex with associated histone deacetylase (HDAC) enzymatic activity. Physical interactions of mSin3A with many sequence-specific transcription factors has linked the mSin3A corepressor complex to the regulation of diverse signaling pathways and associated biological processes. To dissect the complex nature of mSin3A's actions, we monitored the impact of conditional mSin3A deletion on the developmental, cell biological, and transcriptional levels. mSin3A was shown to play an essential role in early embryonic development and in the proliferation and survival of primary, immortalized, and transformed cells. Genetic and biochemical analyses established a role for mSin3A/HDAC in p53 deacetylation and activation, although genetic deletion of p53 was not sufficient to attenuate the mSin3A null cell lethal phenotype. Consistent with mSin3A's broad biological activities beyond regulation of the p53 pathway, time-course gene expression profiling following mSin3A deletion revealed deregulation of genes involved in cell cycle regulation, DNA replication, DNA repair, apoptosis, chromatin modifications, and mitochondrial metabolism. Computational analysis of the mSin3A transcriptome using a knowledge-based database revealed several nodal points through which mSin3A influences gene expression, including the Myc-Mad, E2F, and p53 transcriptional networks. Further validation of these nodes derived from in silico promoter analysis showing enrichment for Myc-Mad, E2F, and p53 cis-regulatory elements in regulatory regions of up-regulated genes following mSin3A depletion. Significantly, in silico promoter analyses also revealed specific cis-regulatory elements binding the transcriptional activator Stat and the ISWI ATP-dependent nucleosome remodeling factor Falz, thereby expanding further the mSin3A network of regulatory factors. Together, these integrated genetic, biochemical, and computational studies demonstrate the involvement of mSin3A in the regulation of diverse pathways governing many aspects of normal and neoplastic growth and survival and provide an experimental framework for the analysis of essential genes with diverse biological functions
PMCID:1172064
PMID: 15998811
ISSN: 0890-9369
CID: 63113