Searched for: in-biosketch:yes
person:hernae07
A Systems Biology Approach Identifies FUT8 as a Driver of Melanoma Metastasis
Agrawal, Praveen; Fontanals-Cirera, Barbara; Sokolova, Elena; Jacob, Samson; Vaiana, Christopher A; Argibay, Diana; Davalos, Veronica; McDermott, Meagan; Nayak, Shruti; Darvishian, Farbod; Castillo, Mireia; Ueberheide, Beatrix; Osman, Iman; Fenyo, David; Mahal, Lara K; Hernando, Eva
Association of aberrant glycosylation with melanoma progression is based mainly on analyses of cell lines. Here we present a systems-based study of glycomic changes and corresponding enzymes associated with melanoma metastasis in patient samples. Upregulation of core fucosylation (FUT8) and downregulation of alpha-1,2 fucosylation (FUT1, FUT2) were identified as features of metastatic melanoma. Using both in vitro and in vivo studies, we demonstrate FUT8 is a driver of melanoma metastasis which, when silenced, suppresses invasion and tumor dissemination. Glycoprotein targets of FUT8 were enriched in cell migration proteins including the adhesion molecule L1CAM. Core fucosylation impacted L1CAM cleavage and the ability of L1CAM to support melanoma invasion. FUT8 and its targets represent therapeutic targets in melanoma metastasis.
PMCID:5649440
PMID: 28609658
ISSN: 1878-3686
CID: 2593662
MicroRNA-125a promotes resistance to BRAF inhibitors through suppression of the intrinsic apoptotic pathway
Koetz-Ploch, Lisa; Hanniford, Douglas; Dolgalev, Igor; Sokolova, Elena; Zhong, Judy; Diaz-Martinez, Marta; Bernstein, Emily; Darvishian, Farbod; Flaherty, Keith T; Chapman, Paul B; Tawbi, Hussein; Hernando, Eva
Melanoma patients with BRAFV600E -mutant tumors display striking responses to BRAF inhibitors (BRAFi); however, almost all invariably relapse with drug-resistant disease. Here we report that microRNA-125a (miR-125a) expression is upregulated in human melanoma cells and patient tissues upon acquisition of BRAFi resistance. We show that miR-125a induction confers resistance to BRAFV600E melanoma cells to BRAFi by directly suppressing pro-apoptotic components of the intrinsic apoptosis pathway, including BAK1 and MLK3. Apoptotic suppression and prolonged survival favor reactivation of the MAPK and AKT pathways by drug-resistant melanoma cells. We demonstrate that miR-125a inhibition suppresses the emergence of resistance to BRAFi and, in a subset of resistant melanoma cell lines, leads to partial drug re-sensitization. Finally, we show that miR-125a upregulation is mediated by TGFbeta signaling. In conclusion, the identification of this novel role for miR-125a in BRAFi resistance exposes clinically relevant mechanisms of melanoma cell survival that can be exploited therapeutically
PMCID:5411293
PMID: 28140520
ISSN: 1755-148x
CID: 2425092
Kruppel-like factor 4 (KLF4) regulates the miR-183~96~182 cluster under physiologic and pathologic conditions
Segura, Miguel F; Jubierre, Luz; Li, SiDe; Soriano, Aroa; Koetz, Lisa; Gaziel-Sovran, Avital; Masanas, Marc; Kleffman, Kevin; Dankert, John F; Walsh, Martin J; Hernando, Eva
MicroRNAs (miRNAs) are a class of endogenous non-coding small RNAs that post-transcriptionally control the translation and stability of target mRNAs in a sequence-dependent manner. MiRNAs are essential for key cellular processes including proliferation, differentiation, cell death and metabolism, among others. Consequently, alterations of miRNA expression contribute to developmental defects and a myriad of diseases.The expression of miRNAs can be altered by several mechanisms including gene copy number alterations, aberrant DNA methylation, defects of the miRNA processing machinery or unscheduled expression of transcription factors. In this work, we sought to analyze the regulation of the miR-182 cluster, located at the 7q32 locus, which encodes three different miRNAs that are abundantly expressed in human embryonic stem cells and de-regulated in cancer. We have found that the Kruppel-like factor 4 (KLF4) directly regulates miR-182 cluster expression in human embryonic stem cells (hESCs) and in melanoma tumors, in which the miR-182 cluster is highly expressed and has a pro-metastatic role. Furthermore, higher KLF4 expression was found to be associated with metastatic progression and poor patient outcome. Loss of function experiments revealed that KLF4 is required for melanoma cell maintenance. These findings provide new insights into the regulation of the miR-182 cluster expression and new opportunities for therapeutic intervention in tumors in which the KLF4-miR-182 cluster axis is deregulated.
PMCID:5432258
PMID: 28412746
ISSN: 1949-2553
CID: 2532482
A TGFbeta-miR-182-BRCA1 axis controls the mammary differentiation hierarchy
Martinez-Ruiz, Haydeliz; Illa-Bochaca, Irineu; Omene, Coral; Hanniford, Douglas; Liu, Qi; Hernando, Eva; Barcellos-Hoff, Mary Helen
Maintenance of mammary functional capacity during cycles of proliferation and regression depends on appropriate cell fate decisions of mammary progenitor cells to populate an epithelium consisting of secretory luminal cells and contractile myoepithelial cells. It is well established that transforming growth factor-beta (TGFbeta) restricts mammary epithelial cell proliferation and that sensitivity to TGFbeta is decreased in breast cancer. We show that TGFbeta also exerts control of mammary progenitor self-renewal and lineage commitment decisions by stringent regulation of breast cancer associated 1 (BRCA1), which controls stem cell self-renewal and lineage commitment. Either genetic depletion of Tgfb1 or transient blockade of TGFbeta increased self-renewal of mammary progenitor cells in mice, cultured primary mammary epithelial cells, and also skewed lineage commitment toward the myoepithelial fate. TGFbeta stabilized the abundance of BRCA1 by reducing the abundance of microRNA-182 (miR-182). Ectopic expression of BRCA1 or antagonism of miR-182 in cultured TGFbeta-deficient mammary epithelial cells restored luminal lineage commitment. These findings reveal that TGFbeta modulation of BRCA1 directs mammary epithelial cell fate and, because stem or progenitor cells are thought to be the cell of origin for aggressive breast cancer subtypes, suggest that TGFbeta dysregulation during tumorigenesis may promote distinct breast cancer subtypes.
PMCID:5619986
PMID: 27923913
ISSN: 1937-9145
CID: 2353502
A systems biology approach identifies FUT8 as a novel driver of melanoma metastasis [Meeting Abstract]
Agrawal, Praveen; Fontanals, Barbara; Sokolova, Elena; Jacob, Samson; Vaiana, Christopher A; McDermott, Meagan; Argibay, Diana; Darvishian, Farbod; Castillo, Mireia; Ueberheide, Beatrix; Osman, Iman; Fenyo, David; Mahal, Lara K; Hernando, Eva
ISI:000392935600182
ISSN: 1460-2423
CID: 2451662
SPROUTY-2 represses the epithelial phenotype of colon carcinoma cells via upregulation of ZEB1 mediated by ETS1 and miR-200/miR-150
Barbachano, A; Fernandez-Barral, A; Pereira, F; Segura, M F; Ordonez-Moran, P; Carrillo-de Santa Pau, E; Gonzalez-Sancho, J M; Hanniford, D; Martinez, N; Costales-Carrera, A; Real, F X; Palmer, H G; Rojas, J M; Hernando, E; Munoz, A
SPROUTY-2 (SPRY2) is a modulator of tyrosine kinase receptor signaling with receptor- and cell type-dependent inhibitory or enhancing effects. Studies on the action of SPRY2 in major cancers are conflicting and its role remains unclear. Here we have dissected SPRY2 action in human colon cancer. Global transcriptomic analyses show that SPRY2 downregulates genes encoding tight junction proteins such as claudin-7 and occludin and other cell-to-cell and cell-to-matrix adhesion molecules in human SW480-ADH colon carcinoma cells. Moreover, SPRY2 represses LLGL2/HUGL2, PATJ1/INADL and ST14, main regulators of the polarized epithelial phenotype, and ESRP1, an epithelial-to-mesenchymal transition (EMT) inhibitor. A key action of SPRY2 is the upregulation of the major EMT inducer ZEB1, as these effects are reversed by ZEB1 knock-down by means of RNA interference. Consistently, we found an inverse correlation between the expression level of claudin-7 and those of SPRY2 and ZEB1 in human colon tumors. Mechanistically, ZEB1 upregulation by SPRY2 results from the combined induction of ETS1 transcription factor and the repression of microRNAs (miR-200 family, miR-150) that target ZEB1 RNA. Moreover, SPRY2 increased AKT activation by epidermal growth factor, whereas AKT and also Src inhibition reduced the induction of ZEB1. Altogether, these data suggest that AKT and Src are implicated in SPRY2 action. Collectively, these results show a tumorigenic role of SPRY2 in colon cancer that is based on the dysregulation of tight junction and epithelial polarity master genes via upregulation of ZEB1. The dissection of the mechanism of action of SPRY2 in colon cancer cells is important to understand the upregulation of this gene in a subset of patients with this neoplasia that have poor prognosis.Oncogene advance online publication, 12 October 2015; doi:10.1038/onc.2015.366.
PMID: 26455323
ISSN: 1476-5594
CID: 1803562
BET and BRAF inhibitors act synergistically against BRAF-mutant melanoma
Paoluzzi, Luca; Hanniford, Douglas; Sokolova, Elena; Osman, Iman; Darvishian, Farbod; Wang, Jinhua; Bradner, James E; Hernando, Eva
Despite major advances in the treatment of metastatic melanoma, treatment failure is still inevitable in most cases. Manipulation of key epigenetic regulators, including inhibition of Bromodomain and extra-terminal domain (BET) family members impairs cell proliferation in vitro and tumor growth in vivo in different cancers, including melanoma. Here, we investigated the effect of combining the BET inhibitor JQ1 with the BRAF inhibitor Vemurafenib in in vitro and in vivo models of BRAF-mutant melanoma. We performed cytotoxicity and apoptosis assays, and a xenograft mouse model to determine the in vitro and in vivo efficacy of JQ1 in combination with Vemurafenib against BRAF-mutant melanoma cell lines. Further, to investigate the molecular mechanisms underlying the effects of combined treatment, we conducted antibody arrays of in vitro drug-treated cell lines and RNA sequencing of drug-treated xenograft tumors. The combination of JQ1 and Vemurafenib acted synergistically in BRAF-mutant cell lines, resulting in marked apoptosis in vitro, with upregulation of proapoptotic proteins. In vivo, combination treatment suppressed tumor growth and significantly improved survival compared to either drug alone. RNA sequencing of tumor tissues revealed almost four thousand genes that were uniquely modulated by the combination, with several anti-apoptotic genes significantly down-regulated. Collectively, our data provide a rationale for combined BET and BRAF inhibition as a novel strategy for the treatment of melanoma.
PMCID:4867668
PMID: 27169980
ISSN: 2045-7634
CID: 2107752
Genomic characterization of acral lentiginous melanoma: Identification of altered metabolism as a potential therapeutic target. [Meeting Abstract]
Weiss, Sarah Ann; Martinez, Carlos N.; de Miera, Eleazar Vega-Saenz; Dolgalev, Igor; Shapiro, Richard L.; Heguy, Adriana; Hernando, Eva; Kirchhoff, Tomas; Osman, Iman
ISI:000404711507146
ISSN: 0732-183x
CID: 5236632
Targeted next-generation sequencing of melanoma patient samples to reveal mutations in non-protein coding regions of targetable oncogenes. [Meeting Abstract]
Hanniford, Doug; Martinez, Carlos N.; Dolgalev, Igor; de Miera, Eleazar Vega-Saenz; Robinson, Eric Michael; Goldman, Chloe; Heguy, Adriana; Kirchhoff, Tomas; Osman, Iman; Hernando, Eva
ISI:000404711507181
ISSN: 0732-183x
CID: 5236642
Revisiting determinants of prognosis in cutaneous melanoma
Weiss, Sarah A; Hanniford, Douglas; Hernando, Eva; Osman, Iman
The American Joint Committee on Cancer staging system for cutaneous melanoma is based on primary tumor thickness and the presence of ulceration, mitoses, lymph node spread, and distant metastases as determinants of prognosis. Although this cutaneous melanoma staging system has evolved over time to more accurately reflect patient prognosis, improvements are still needed, because current understanding of the particular factors (genetic mutation, expression alteration, host response, etc) that are critical for predicting patient outcomes is incomplete. Given the clinical and biologic heterogeneity of primary melanomas, new prognostic tools are needed to more precisely identify patients who are most likely to develop advanced disease. Such tools would affect clinical surveillance strategies and aid in patient selection for adjuvant therapy. The authors reviewed the literature on prognostic molecular and immunologic markers in primary cutaneous melanoma, their associations with clinicopathologic and survival outcomes, and their potential for incorporation into current staging models. Overall, the studies considered in this review did not define prognostic markers that could be readily incorporated into the current staging system. Therefore, efforts should be continued in these and other directions to maximize the likelihood of identifying clinically useful prognostic biomarkers for cutaneous melanoma. Cancer 2015. (c) 2015 American Cancer Society.
PMCID:4666819
PMID: 26308244
ISSN: 1097-0142
CID: 1742192