Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:jah12

Total Results:

53


C. elegans pro-1 activity is required for soma/germline interactions that influence proliferation and differentiation in the germ line

Killian, Darrell J; Hubbard, E Jane Albert
Strict spatial and temporal regulation of proliferation and differentiation is essential for proper germline development and often involves soma/germline interactions. In C. elegans, a particularly striking outcome of defective regulation of the proliferation/differentiation pattern is the Pro phenotype in which an ectopic mass of proliferating germ cells occupies the proximal adult germ line, a region normally occupied by gametes. We describe a reduction-of-function mutation in the gene pro-1 that causes a highly penetrant Pro phenotype. The pro-1 mutant Pro phenotype stems from defects in the time and position of the first meiotic entry during early germline development. pro-1(RNAi) produces a loss of somatic gonad structures and concomitant reduction in germline proliferation and gametogenesis. pro-1 encodes a member of a highly conserved subfamily of WD-repeat proteins. pro-1(+) is required in the sheath/spermatheca lineage of the somatic gonad in its role in the proper establishment of the proliferation/differentiation pattern in the germline. Our results provide a handle for further analysis of this soma-to-germline interaction
PMID: 14973273
ISSN: 0950-1991
CID: 72496

The establishment of Caenorhabditis elegans germline pattern is controlled by overlapping proximal and distal somatic gonad signals

Pepper, Anita S-R; Lo, Te Wen; Killian, Darrell J; Hall, David H; Hubbard, E Jane Albert
We investigated the control of proliferation and differentiation in the larval Caenorhabditis elegans hermaphrodite germ line through analysis of glp-1 and lag-2 mutants, cell ablations, and ultrastructural data. After the first several rounds of germ cell division, GLP-1, a receptor of the LIN-12/Notch family, governs germline proliferation. We analyzed the proximal proliferation (Pro) phenotype in glp-1(ar202) and found that initial meiosis was delayed and spatially mispositioned. This is due, at least in part, to a heightened response of the mutant GLP-1 receptor to multiple sources of the somatic ligand LAG-2, including the proximal somatic gonad. We investigated whether proximal LAG-2 affects germline proliferation in the wild type. Our results indicate that (1) LAG-2 is necessary for GLP-1-mediated germline proliferation and prevention of early meiosis, and (2) several distinct anatomical sources of LAG-2 in the larval somatic gonad functionally overlap to promote proliferation and prevent early meiosis. Ultrastructural studies suggest that mitosis is not restricted to areas of direct DTC-germ line contact and that the germ line shares a common cytoplasm in larval stages. We propose that downregulation of the GLP-1 signaling pathway in the proximal germ line at the time of meiotic onset is under tight temporal and spatial control
PMID: 12871705
ISSN: 0012-1606
CID: 72497

A germ-cell odyssey: fate, survival, migration, stem cells and differentiation. Meeting on germ cells

Hubbard, E Jane Albert; Pera, Renee A Reijo
PMCID:1319163
PMID: 12671678
ISSN: 1469-221x
CID: 72498

Genetic analysis of Caenorhabditis elegans glp-1 mutants suggests receptor interaction or competition

Pepper, Anita S-R; Killian, Darrell J; Hubbard, E Jane Albert
glp-1 encodes a member of the highly conserved LIN-12/Notch family of receptors that mediates the mitosis/meiosis decision in the C. elegans germline. We have characterized three mutations that represent a new genetic and phenotypic class of glp-1 mutants, glp-1(Pro). The glp-1(Pro) mutants display gain-of-function germline pattern defects, most notably a proximal proliferation (Pro) phenotype. Each of three glp-1(Pro) alleles encodes a single amino acid change in the extracellular part of the receptor: two in the LIN-12/Notch repeats (LNRs) and one between the LNRs and the transmembrane domain. Unlike other previously described gain-of-function mutations that affect this region of LIN-12/Notch family receptors, the genetic behavior of glp-1(Pro) alleles is not consistent with simple hypermorphic activity. Instead, the mutant phenotype is suppressed by wild-type doses of glp-1. Moreover, a trans-heterozygous combination of two highly penetrant glp-1(Pro) mutations is mutually suppressing. These results lend support to a model for a higher-order receptor complex and/or competition among receptor proteins for limiting factors that are required for proper regulation of receptor activity. Double-mutant analysis with suppressors and enhancers of lin-12 and glp-1 further suggests that the functional defect in glp-1(Pro) mutants occurs prior to or at the level of ligand interaction
PMCID:1462416
PMID: 12586701
ISSN: 0016-6731
CID: 72499

A sense of life: computational and experimental investigations with models of biochemical and evolutionary processes

Mishra, Bud; Daruwala, Raoul-Sam; Zhou, Yi; Ugel, Nadia; Policriti, Alberto; Antoniotti, Marco; Paxia, Salvatore; Rejali, Marc; Rudra, Archisman; Cherepinsky, Vera; Silver, Naomi; Casey, William; Piazza, Carla; Simeoni, Marta; Barbano, Paolo; Spivak, Marina; Feng, Jiawu; Gill, Ofer; Venkatesh, Mysore; Cheng, Fang; Sun, Bing; Ioniata, Iuliana; Anantharaman, Thomas; Hubbard, E Jane Albert; Pnueli, Amir; Harel, David; Chandru, Vijay; Hariharan, Ramesh; Wigler, Michael; Park, Frank; Lin, Shih-Chieh; Lazebnik, Yuri; Winkler, Franz; Cantor, Charles R; Carbone, Alessandra; Gromov, Mikhael
We collaborate in a research program aimed at creating a rigorous framework, experimental infrastructure, and computational environment for understanding, experimenting with, manipulating, and modifying a diverse set of fundamental biological processes at multiple scales and spatio-temporal modes. The novelty of our research is based on an approach that (i) requires coevolution of experimental science and theoretical techniques and (ii) exploits a certain universality in biology guided by a parsimonious model of evolutionary mechanisms operating at the genomic level and manifesting at the proteomic, transcriptomic, phylogenic, and other higher levels. Our current program in 'systems biology' endeavors to marry large-scale biological experiments with the tools to ponder and reason about large, complex, and subtle natural systems. To achieve this ambitious goal, ideas and concepts are combined from many different fields: biological experimentation, applied mathematical modeling, computational reasoning schemes, and large-scale numerical and symbolic simulations. From a biological viewpoint, the basic issues are many: (i) understanding common and shared structural motifs among biological processes; (ii) modeling biological noise due to interactions among a small number of key molecules or loss of synchrony; (iii) explaining the robustness of these systems in spite of such noise; and (iv) cataloging multistatic behavior and adaptation exhibited by many biological processes
PMID: 14583115
ISSN: 1536-2310
CID: 71659

The Caenorhabditis elegans gonad: a test tube for cell and developmental biology

Hubbard, E J; Greenstein, D
Sexual reproduction of multicellular organisms depends critically on the coordinate development of the germ line and somatic gonad, a process known as gonadogenesis. Together these tissues ensure the formation of functional gametes and, in the female of many species, create a context for production and further development of the zygote. Since the future of the species hangs in the balance, it is not surprising that gonadogenesis is a complex process involving conserved and multi-faceted developmental mechanisms. Genetic, anatomical, cell biological, and molecular experiments have established the nematode Caenorhabditis elegans as a paradigm for studying gonadogenesis. Furthermore, these studies demonstrate the utility of C. elegans gonadogenesis for exploring broad issues in cell and developmental biology, such as cell fate specification, morphogenesis, cell signaling, cell cycle control, and programmed cell death. The synergy of molecular genetics and cell biology conducted at single-cell resolution in real time permits an extraordinary depth of analysis in this organism. In this review, we first describe the embryonic and post-embryonic development and morphology of the C. elegans gonad. Next we recount seminal experiments that established the field, highlight recent results that provide insight into conserved developmental mechanisms, and present future prospects for the field
PMID: 10822256
ISSN: 1058-8388
CID: 72529

Evidence for functional and physical association between Caenorhabditis elegans SEL-10, a Cdc4p-related protein, and SEL-12 presenilin

Wu, G; Hubbard, E J; Kitajewski, J K; Greenwald, I
Mutations in either of two human presenilin genes (PS1 and PS2) cause Alzheimer's disease. Here we describe genetic and physical interactions between Caenorhabditis elegans SEL-10, a member of the Cdc4p family of proteins, and SEL-12, a C. elegans presenilin. We show that loss of sel-10 activity can suppress the egg-laying defective phenotype associated with reducing sel-12 activity, and that SEL-10 can physically complex with SEL-12. Proteins of the Cdc4p family have been shown to target proteins for ubiquitin-mediated turnover. The functional and physical interaction between sel-10 and sel-12 therefore offers an approach to understanding how presenilin levels are normally regulated
PMCID:28122
PMID: 9861048
ISSN: 0027-8424
CID: 90881

sel-10, a negative regulator of lin-12 activity in Caenorhabditis elegans, encodes a member of the CDC4 family of proteins

Hubbard, E J; Wu, G; Kitajewski, J; Greenwald, I
Mutations that influence lin-12 activity in Caenorhabditis elegans may identify conserved factors that regulate the activity of lin-12/Notch proteins. We describe genetic evidence indicating that sel-10 is a negative regulator of lin-12/Notch-mediated signaling in C. elegans. Sequence analysis shows that SEL-10 is a member of the CDC4 family of proteins and has a potential human ortholog. Coimmunoprecipitation data indicate that C. elegans SEL-10 complexes with LIN-12 and with murine Notch4. We propose that SEL-10 promotes the ubiquitin-mediated turnover of LIN-12/Notch proteins, and discuss potential roles for the regulation of lin-12/Notch activity by sel-10 in cell fate decisions and tumorigenesis
PMCID:316751
PMID: 9389650
ISSN: 0890-9369
CID: 72530

Evidence for physical and functional association between EMB-5 and LIN-12 in Caenorhabditis elegans

Hubbard, E J; Dong, Q; Greenwald, I
The Caenorhabditis elegans LIN-12 and GLP-1 proteins are members of the LIN-12/Notch family of receptors for intercellular signals that specify cell fate. Evidence presented here suggests that the intracellular domains of LIN-12 and GLP-1 interact with the C. elegans EMB-5 protein and that the emb-5 gene functions in the same pathway as the lin-12 and glp-1 genes. EMB-5 is similar in sequence to a yeast protein that controls chromatin structure. Hence, a direct consequence of LIN-12 or GLP-1 activation may be an alteration of chromatin structure that produces changes in transcriptional activity
PMID: 8658178
ISSN: 0036-8075
CID: 72531

Dosage-dependent modulation of glucose repression by MSN3 (STD1) in Saccharomyces cerevisiae

Hubbard, E J; Jiang, R; Carlson, M
The SNF1 protein kinase of Saccharomyces cerevisiae is required to relieve glucose repression of transcription. To identify components of the SNF1 pathway, we isolated multicopy suppressors of defects caused by loss of SNF4, an activator of the SNF1 kinase. Increased dosage of the MSN3 gene restored invertase expression in snf4 mutants and also relieved glucose repression in the wild type. Deletion of MSN3 caused no substantial phenotype, and we identified a homolog, MTH1, encoding a protein 61% identical to MSN3. Both are also homologous to chicken fimbrin, human plastin, and yeast SAC6 over a 43-residue region. Deletion of MSN3 and MTH1 together impaired derepression of invertase in response to glucose limitation. Finally, MSN3 physically interacts with the SNF1 protein kinase, as assayed by a two-hybrid system and by in vitro binding studies. MSN3 is the same gene as STD1, a multicopy suppressor of defects caused by overexpression of the C terminus of TATA-binding protein (R. W. Ganster, W. Shen, and M. C. Schmidt, Mol. Cell. Biol. 13:3650-3659, 1993). Taken together, these data suggest that MSN3 modulates the regulatory response to glucose and may couple the SNF1 pathway to transcription
PMCID:358556
PMID: 8114728
ISSN: 0270-7306
CID: 90880