Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:khannk01

Total Results:

74


Combining Adoptive Cell Therapy with Cytomegalovirus-Based Vaccine Is Protective against Solid Skin Tumors

Grenier, Jeremy M; Yeung, Stephen T; Qiu, Zhijuan; Jellison, Evan R; Khanna, Kamal M
Despite many years of research, cancer vaccines have largely been ineffective in the treatment of established cancers. Many barriers to immune-mediated destruction of malignant cells exist, and these likely limit the efficacy of cancer vaccines. In this study, we sought to enhance the efficacy of a cytomegalovirus (CMV)-based vaccine targeting melanoma by combining vaccination with other forms of immunotherapy. Adoptive cell therapy in humans and in animal models has been shown to be effective for tumor regression. Thus, in this study, we assessed whether CMV-based vaccines in combination with adoptively transferred antitumor T cells could provide greater antitumor protection than either therapy alone. Our results show that adoptive cell therapy greatly enhanced the antitumor effects of CMV-based vaccines targeting the foreign model antigen, OVA, or the melanoma differentiation antigen, gp100. Combination adoptive cell therapy and vaccination induced the upregulation of the inhibitory ligands, PD-L1, and Qa-1b, on B16 tumor cells. This expression paralleled the infiltration of tumors by vaccine-stimulated T cells which also expressed high levels of the receptors PD-1 and NKG2A/C/E, suggesting a potential mechanism of tumor immune evasion. Surprisingly, therapeutic blockade of the PD-1/PD-L1 and NKG2A/Qa-1b axes did not delay tumor growth following vaccination, suggesting that the presence of inhibitory ligands within malignant tissue may not be an effective biomarker for successful combination therapy with CMV-based vaccines. Overall, our studies show that therapeutic CMV-based vaccines in combination with adoptive T cell transfer alone are effective for tumor rejection.
PMCID:5775971
PMID: 29387061
ISSN: 1664-3224
CID: 3190012

Visualizing Endogenous Effector T Cell Egress from the Lymph Nodes

Menon, Manisha; Benechet, Alexandre P; Khanna, Kamal M
Local anatomy of lymphoid tissues during infection has emerged as a critical regulator of immunity; thus, studying the cellular choreography in the context of an intact tissue environment in situ is crucial. Following an infection, the local pathogen-specific T cell migration and the subsequent egress of effector T cells from the draining lymph nodes are important and complex biological processes. The mechanisms that regulate this complex process can now be investigated by directly visualizing T cell dynamics in vivo using intravital two-photon (2P) microscopy. In addition, static whole-mount imaging technique can provide us with a comprehensive assessment of global changes in the distribution of cellular populations within an intact tissue. Thus, in this chapter, we detail methods to visualize the migration and egress of endogenous antigen-specific CD8 T cells following viral infection using two methods-intravital 2P microscopy and multicolor whole-mount in situ tetramer staining.
PMID: 28349475
ISSN: 1940-6029
CID: 3190002

Pregnane X Receptor Regulates Pathogen-Induced Inflammation and Host Defense against an Intracellular Bacterial Infection through Toll-like Receptor 4

Qiu, Zhijuan; Cervantes, Jorge L; Cicek, Basak B; Mukherjee, Subhajit; Venkatesh, Madhukumar; Maher, Leigh A; Salazar, Juan C; Mani, Sridhar; Khanna, Kamal M
The nuclear pregnane X receptor (PXR) plays a central role in regulating xenobiotic metabolism. We now report a novel role for PXR as a critical negative regulator of innate immunity after infection. Pxr(-/-) mice exhibited remarkably elevated pro-inflammatory cytokine and chemokine production following infection with Listeria monocytogenes (Lm). Despite the more robust innate immune response, Pxr(-/-) mice were highly susceptible to Lm infection. Surprisingly, disruption of the Toll-like receptor 4 (TLR4) but not TLR2 signaling restored the inflammation to normal levels and the ability to clear Lm in Pxr(-/-) mice. Mechanistically, the heightened inflammation in Pxr(-/-) mice resulted in the death of inflammatory monocytes that led to the enhanced susceptibility to Lm infection. These data demonstrated that PXR regulated pathogen-induced inflammation and host defense against Lm infection through modulating the TLR4 pathway. In summary, we discovered an apical role for PXR in regulating innate immunity. In addition, we uncovered a remarkable negative impact of the TLR4 pathway in controlling the quality of the inflammatory response and host defense against a gram-positive bacterial infection.
PMCID:4994038
PMID: 27550658
ISSN: 2045-2322
CID: 3189972

IL-17A-producing resident memory γδ T cells orchestrate the innate immune response to secondary oral Listeria monocytogenes infection

Romagnoli, Pablo A; Sheridan, Brian S; Pham, Quynh-Mai; Lefrançois, Leo; Khanna, Kamal M
Memory γδ T cells are important for the clearance of Listeria monocytogenes infection in the intestinal mucosa. However, the mechanisms by which memory γδ T cells provide protection against secondary oral infection are poorly understood. Here we used a recombinant strain of L. monocytogenes that efficiently invades the intestinal epithelium to show that Vγ4(+) memory γδ T cells represent a resident memory (Trm) population in the mesenteric lymph nodes (MLNs). The γδ Trm exhibited a remarkably static pattern of migration that radically changed following secondary oral L. monocytogenes infection. The γδ Trms produced IL-17A early after rechallenge and formed organized clusters with myeloid cells surrounding L. monocytogenes replication foci only after a secondary oral infection. Antibody blocking studies showed that in addition to IL-17A, the chemokine receptor C-X-C chemokine receptor 3 (CXCR3) is also important to enable the local redistribution of γδ Trm cells and myeloid cells specifically near the sites of L. monocytogenes replication within the MLN to restrict bacterial growth and spread. Our findings support a role for γδ Trms in orchestrating protective immune responses against intestinal pathogens.
PMCID:4968747
PMID: 27402748
ISSN: 1091-6490
CID: 3189962

TNF and CD28 Signaling Play Unique but Complementary Roles in the Systemic Recruitment of Innate Immune Cells after Staphylococcus aureus Enterotoxin A Inhalation

Svedova, Julia; Tsurutani, Naomi; Liu, Wenhai; Khanna, Kamal M; Vella, Anthony T
Staphylococcus aureus enterotoxins cause debilitating systemic inflammatory responses, but how they spread systemically and trigger inflammatory cascade is unclear. In this study, we showed in mice that after inhalation, Staphylococcus aureus enterotoxin A rapidly entered the bloodstream and induced T cells to orchestrate systemic recruitment of inflammatory monocytes and neutrophils. To study the mechanism used by specific T cells that mediate this process, a systems approach revealed inducible and noninducible pathways as potential targets. It was found that TNF caused neutrophil entry into the peripheral blood, whereas CD28 signaling, but not TNF, was needed for chemotaxis of inflammatory monocytes into blood and lymphoid tissue. However, both pathways triggered local recruitment of neutrophils into lymph nodes. Thus, our findings revealed a dual mechanism of monocyte and neutrophil recruitment by T cells relying on overlapping and nonoverlapping roles for the noninducible costimulatory receptor CD28 and the inflammatory cytokine TNF. During sepsis, there might be clinical value in inhibiting CD28 signaling to decrease T cell-mediated inflammation and recruitment of innate cells while retaining bioactive TNF to foster neutrophil circulation.
PMCID:4875807
PMID: 27183621
ISSN: 1550-6606
CID: 3189952

T cell-intrinsic S1PR1 regulates endogenous effector T-cell egress dynamics from lymph nodes during infection

Benechet, Alexandre P; Menon, Manisha; Xu, Daqi; Samji, Tasleem; Maher, Leigh; Murooka, Thomas T; Mempel, Thorsten R; Sheridan, Brian S; Lemoine, Francois M; Khanna, Kamal M
Viral clearance requires effector T-cell egress from the draining lymph node (dLN). The mechanisms that regulate the complex process of effector T-cell egress from the dLN after infection are poorly understood. Here, we visualized endogenous pathogen-specific effector T-cell migration within, and from, the dLN. We used an inducible mouse model with a temporally disrupted sphingosine-1-phosphate receptor-1 (S1PR1) gene specifically in endogenous effector T cells. Early after infection, WT and S1PR1(-/-) effector T cells localized exclusively within the paracortex. This localization in the paracortex by CD8 T cells was followed by intranodal migration by both WT and S1PR1(-/-) T cells to positions adjacent to both cortical and medullary lymphatic sinuses where the T cells exhibited intense probing behavior. However, in contrast to WT, S1PR1(-/-) effector T cells failed to enter the sinuses. We demonstrate that, even when LN retention signals such as CC chemokine receptor 7 (CCR7) are down-regulated, T cell intrinsic S1PR1 is the master regulator of effector T-cell emigration from the dLN.
PMCID:4776484
PMID: 26862175
ISSN: 1091-6490
CID: 3189932

Reviving virus based cancer vaccines by using cytomegalovirus vectors expressing modified tumor antigens

Qiu, Zhijuan; Grenier, Jeremy M; Khanna, Kamal M
Cancer vaccines that have utilized various immunization strategies to induce antitumor immunity have largely failed in clinical settings. We have recently developed a cancer vaccine using a cytomegalovirus (CMV) based vector that expressed a modified melanoma antigen that elicited a robust antitumor CD8+ T cell response and tumor rejection.
PMCID:4760325
PMID: 26942064
ISSN: 2162-4011
CID: 3189942

CD8 T Cells Enter the Splenic T Cell Zones Independently of CCR7, but the Subsequent Expansion and Trafficking Patterns of Effector T Cells after Infection Are Dysregulated in the Absence of CCR7 Migratory Cues

Sharma, Naveen; Benechet, Alexandre P; Lefrançois, Leo; Khanna, Kamal M
CCR7 is an important chemokine receptor that regulates T cell trafficking and compartmentalization within secondary lymphoid organs. However, the T cell-intrinsic role of CCR7 during infection in the spleen is not well understood. This study was designed to understand how CCR7-dependent localization and migration of CD8(+) T cells in different compartments of the spleen affected the primary and recall responses after infection. To this end, we used adoptive transfer of naive Ag-specific CD8 T cells (OT-I) that either lacked CCR7 or constitutively expressed CCR7 (CD2-CCR7) in mice that were subsequently infected i.v. with Listeria monocytogenes. We show that naive CCR7(-/-)CD8(+) T cells failed to enter the T cell zone, whereas CD2-CCR7 OT-I cells were exclusively confined to the T cell zones of the spleen. Surprisingly, however, CCR7(-/-) OT-I cells entered the T cell zones after infection, but the entry and egress migratory pattern of these cells was dysregulated and very distinct compared with wild-type OT-I cells. Moreover, CCR7-deficient OT-I cells failed to expand robustly when compared with wild-type OT-I cells and were preferentially skewed toward a short-lived effector cell differentiation pattern. Interestingly, CCR7(-/-), CD2-CCR7, and wild-type OT-I memory cells responded equally well to rechallenge infection. These results highlight a novel role of CCR7 in regulating effector CD8 T cell migration in the spleen and demonstrate differential requirement of CCR7 for primary and secondary CD8 T cell responses to infection.
PMCID:4655190
PMID: 26500349
ISSN: 1550-6606
CID: 3189922

Early Effector CD8 T Cells Display Plasticity in Populating the Short-Lived Effector and Memory-Precursor Pools Following Bacterial or Viral Infection

Plumlee, Courtney R; Obar, Joshua J; Colpitts, Sara L; Jellison, Evan R; Haining, W Nicholas; Lefrancois, Leo; Khanna, Kamal M
Naïve antigen-specific CD8 T cells expand in response to infection and can be phenotypically separated into distinct effector populations, which include memory precursor effector cells (MPECs) and short-lived effector cells (SLECs). In the days before the peak of the T cell response, a third population called early effector cells (EECs) predominate the antigen-specific response. However, the contribution of the EEC population to the CD8 T cell differentiation program during an antimicrobial immune response is not well understood. To test if EEC populations were pre-committed to either an MPEC or SLEC fate, we purified EECs from mice infected with Listeria monocytogenes (LM) or vesicular stomatitis virus (VSV), where the relative frequency of each population is known to be different at the peak of the response. Sorted EECs transferred into uninfected hosts revealed that EECs were pre-programmed to differentiate based on early signals received from the distinct infectious environments. Surprisingly, when these same EECs were transferred early into mismatched infected hosts, the transferred EECs could be diverted from their original fate. These results delineate a model of differentiation where EECs are programmed to form MPECs or SLECs, but remain susceptible to additional inflammatory stimuli that can alter their fate.
PMCID:4507483
PMID: 26191658
ISSN: 2045-2322
CID: 3189912

Border Patrol Gone Awry: Lung NKT Cell Activation by Francisella tularensis Exacerbates Tularemia-Like Disease

Hill, Timothy M; Gilchuk, Pavlo; Cicek, Basak B; Osina, Maria A; Boyd, Kelli L; Durrant, Douglas M; Metzger, Dennis W; Khanna, Kamal M; Joyce, Sebastian
The respiratory mucosa is a major site for pathogen invasion and, hence, a site requiring constant immune surveillance. The type I, semi-invariant natural killer T (NKT) cells are enriched within the lung vasculature. Despite optimal positioning, the role of NKT cells in respiratory infectious diseases remains poorly understood. Hence, we assessed their function in a murine model of pulmonary tularemia--because tularemia is a sepsis-like proinflammatory disease and NKT cells are known to control the cellular and humoral responses underlying sepsis. Here we show for the first time that respiratory infection with Francisella tularensis live vaccine strain resulted in rapid accumulation of NKT cells within the lung interstitium. Activated NKT cells produced interferon-γ and promoted both local and systemic proinflammatory responses. Consistent with these results, NKT cell-deficient mice showed reduced inflammatory cytokine and chemokine response yet they survived the infection better than their wild type counterparts. Strikingly, NKT cell-deficient mice had increased lymphocytic infiltration in the lungs that organized into tertiary lymphoid structures resembling induced bronchus-associated lymphoid tissue (iBALT) at the peak of infection. Thus, NKT cell activation by F. tularensis infection hampers iBALT formation and promotes a systemic proinflammatory response, which exacerbates severe pulmonary tularemia-like disease in mice.
PMCID:4465904
PMID: 26068662
ISSN: 1553-7374
CID: 3189902