Searched for: in-biosketch:yes
person:lih09
Interaction between race and prostate cancer treatment benefit in the Veterans Health Administration
Rude, Temitope; Walter, Dawn; Ciprut, Shannon; Kelly, Matthew D; Wang, Chan; Fagerlin, Angela; Langford, Aisha T; Lepor, Herbert; Becker, Daniel J; Li, Huilin; Loeb, Stacy; Ravenell, Joseph; Leppert, John T; Makarov, Danil V
BACKGROUND:Studies have demonstrated that Black men may undergo definitive prostate cancer (CaP) treatment less often than men of other races, but it is unclear whether they are avoiding overtreatment of low-risk disease or experiencing a reduction in appropriate care. The authors' aim was to assess the role of race as it relates to treatment benefit in access to CaP treatment in a single-payer population. METHODS:The authors used the Veterans Health Administration (VHA) Corporate Data Warehouse to perform a retrospective cohort study of veterans diagnosed with low- or intermediate-risk CaP between 2011 and 2017. RESULTS:The authors identified 35,427 men with incident low- or intermediate-risk CaP. When they controlled for covariates, Black men had 1.05 times the odds of receiving treatment in comparison with non-Black men (P < .001), and high-treatment-benefit men had 1.4 times the odds of receiving treatment in comparison with those in the low-treatment-benefit group (P < .001). The interaction of race and treatment benefit was significant, with Black men in the high-treatment-benefit category less likely to receive treatment than non-Black men in the same treatment category (odds ratio, 0.89; P < .001). CONCLUSIONS:Although race does appear to influence the receipt of definitive treatment in the VHA, this relationship varies in the context of the patient's treatment benefit, with Black men receiving less definitive treatment in high-benefit situations. The influence of patient race at high treatment benefit levels invites further investigation into the driving forces behind this persistent disparity in this consequential group.
PMID: 34184271
ISSN: 1097-0142
CID: 4926392
Autoimmune anti-DNA and anti-phosphatidylserine antibodies predict development of severe COVID-19
Gomes, Claudia; Zuniga, Marisol; Crotty, Kelly A; Qian, Kun; Tovar, Nubia Catalina; Lin, Lawrence Hsu; Argyropoulos, Kimon V; Clancy, Robert; Izmirly, Peter; Buyon, Jill; Lee, David C; Yasnot-Acosta, Maria Fernanda; Li, Huilin; Cotzia, Paolo; Rodriguez, Ana
High levels of autoimmune antibodies are observed in COVID-19 patients but their specific contribution to disease severity and clinical manifestations remains poorly understood. We performed a retrospective study of 115 COVID-19 hospitalized patients with different degrees of severity to analyze the generation of autoimmune antibodies to common antigens: a lysate of erythrocytes, the lipid phosphatidylserine (PS) and DNA. High levels of IgG autoantibodies against erythrocyte lysates were observed in a large percentage (up to 36%) of patients. Anti-DNA and anti-PS antibodies determined upon hospital admission correlated strongly with later development of severe disease, showing a positive predictive value of 85.7% and 92.8%, respectively. Patients with positive values for at least one of the two autoantibodies accounted for 24% of total severe cases. Statistical analysis identified strong correlations between anti-DNA antibodies and markers of cell injury, coagulation, neutrophil levels and erythrocyte size. Anti-DNA and anti-PS autoantibodies may play an important role in the pathogenesis of COVID-19 and could be developed as predictive biomarkers for disease severity and specific clinical manifestations.
PMCID:8441539
PMID: 34504035
ISSN: 2575-1077
CID: 5061302
Microbial signatures in the lower airways of mechanically ventilated COVID-19 patients associated with poor clinical outcome
Sulaiman, Imran; Chung, Matthew; Angel, Luis; Tsay, Jun-Chieh J; Wu, Benjamin G; Yeung, Stephen T; Krolikowski, Kelsey; Li, Yonghua; Duerr, Ralf; Schluger, Rosemary; Thannickal, Sara A; Koide, Akiko; Rafeq, Samaan; Barnett, Clea; Postelnicu, Radu; Wang, Chang; Banakis, Stephanie; Pérez-Pérez, Lizzette; Shen, Guomiao; Jour, George; Meyn, Peter; Carpenito, Joseph; Liu, Xiuxiu; Ji, Kun; Collazo, Destiny; Labarbiera, Anthony; Amoroso, Nancy; Brosnahan, Shari; Mukherjee, Vikramjit; Kaufman, David; Bakker, Jan; Lubinsky, Anthony; Pradhan, Deepak; Sterman, Daniel H; Weiden, Michael; Heguy, Adriana; Evans, Laura; Uyeki, Timothy M; Clemente, Jose C; de Wit, Emmie; Schmidt, Ann Marie; Shopsin, Bo; Desvignes, Ludovic; Wang, Chan; Li, Huilin; Zhang, Bin; Forst, Christian V; Koide, Shohei; Stapleford, Kenneth A; Khanna, Kamal M; Ghedin, Elodie; Segal, Leopoldo N
Respiratory failure is associated with increased mortality in COVID-19 patients. There are no validated lower airway biomarkers to predict clinical outcome. We investigated whether bacterial respiratory infections were associated with poor clinical outcome of COVID-19 in a prospective, observational cohort of 589 critically ill adults, all of whom required mechanical ventilation. For a subset of 142 patients who underwent bronchoscopy, we quantified SARS-CoV-2 viral load, analysed the lower respiratory tract microbiome using metagenomics and metatranscriptomics and profiled the host immune response. Acquisition of a hospital-acquired respiratory pathogen was not associated with fatal outcome. Poor clinical outcome was associated with lower airway enrichment with an oral commensal (Mycoplasma salivarium). Increased SARS-CoV-2 abundance, low anti-SARS-CoV-2 antibody response and a distinct host transcriptome profile of the lower airways were most predictive of mortality. Our data provide evidence that secondary respiratory infections do not drive mortality in COVID-19 and clinical management strategies should prioritize reducing viral replication and maximizing host responses to SARS-CoV-2.
PMID: 34465900
ISSN: 2058-5276
CID: 4998422
Microbial trend analysis for common dynamic trend, group comparison, and classification in longitudinal microbiome study
Wang, Chan; Hu, Jiyuan; Blaser, Martin J; Li, Huilin
BACKGROUND:The human microbiome is inherently dynamic and its dynamic nature plays a critical role in maintaining health and driving disease. With an increasing number of longitudinal microbiome studies, scientists are eager to learn the comprehensive characterization of microbial dynamics and their implications to the health and disease-related phenotypes. However, due to the challenging structure of longitudinal microbiome data, few analytic methods are available to characterize the microbial dynamics over time. RESULTS:We propose a microbial trend analysis (MTA) framework for the high-dimensional and phylogenetically-based longitudinal microbiome data. In particular, MTA can perform three tasks: 1) capture the common microbial dynamic trends for a group of subjects at the community level and identify the dominant taxa; 2) examine whether or not the microbial overall dynamic trends are significantly different between groups; 3) classify an individual subject based on its longitudinal microbial profiling. Our extensive simulations demonstrate that the proposed MTA framework is robust and powerful in hypothesis testing, taxon identification, and subject classification. Our real data analyses further illustrate the utility of MTA through a longitudinal study in mice. CONCLUSIONS:The proposed MTA framework is an attractive and effective tool in investigating dynamic microbial pattern from longitudinal microbiome studies.
PMCID:8442444
PMID: 34525957
ISSN: 1471-2164
CID: 5012392
Clinical Trial Protocol for a Randomized Trial of Community Health Worker-led Decision Coaching to Promote Shared Decision-making on Prostate Cancer Screening Among Black Male Patients and Their Providers
Makarov, Danil V; Ciprut, Shannon; Martinez-Lopez, Natalia; Fagerlin, Angela; Thomas, Jerry; Shedlin, Michele; Gold, Heather T; Li, Huilin; Bhat, Sandeep; Warren, Rueben; Ubel, Peter; Ravenell, Joseph E
We propose a randomized controlled trial to evaluate the effectiveness of a community health worker-led decision-coaching program to facilitate shared decision-making for prostate cancer screening decisions by Black men at a primary care federally qualified health center.
PMID: 34426097
ISSN: 2405-4569
CID: 5061072
AGE/RAGE/DIAPH1 axis is associated with immunometabolic markers and risk of insulin resistance in subcutaneous but not omental adipose tissue in human obesity
Ruiz, Henry H; Nguyen, Anh; Wang, Chan; He, Linchen; Li, Huilin; Hallowell, Peter; McNamara, Coleen; Schmidt, Ann Marie
BACKGROUND/OBJECTIVES/OBJECTIVE:The incidence of obesity continues to increase worldwide and while the underlying pathogenesis remains largely unknown, nutrient excess, manifested by "Westernization" of the diet and reduced physical activity have been proposed as key contributing factors. Western-style diets, in addition to higher caloric load, are characterized by excess of advanced glycation end products (AGEs), which have been linked to the pathophysiology of obesity and related cardiometabolic disorders. AGEs can be "trapped" in adipose tissue, even in the absence of diabetes, in part due to higher expression of the receptor for AGEs (RAGE) and/or decreased detoxification by the endogenous glyoxalase (GLO) system, where they may promote insulin resistance. It is unknown whether the expression levels of genes linked to the RAGE axis, including AGER (the gene encoding RAGE), Diaphanous 1 (DIAPH1), the cytoplasmic domain binding partner of RAGE that contributes to RAGE signaling, and GLO1 are differentially regulated by the degree of obesity and/or how these relate to inflammatory and adipocyte markers and their metabolic consequences. SUBJECTS/METHODS/METHODS:We sought to answer this question by analyzing gene expression patterns of markers of the AGE/RAGE/DIAPH1 signaling axis in abdominal subcutaneous (SAT) and omental (OAT) adipose tissue from obese and morbidly obese subjects. RESULTS:In SAT, but not OAT, expression of AGER was significantly correlated with that of DIAPH1 (n = 16; [Formula: see text], [0.260, 1.177]; q = 0.008) and GLO1 (n = 16; [Formula: see text], [0.364, 1.182]; q = 0.004). Furthermore, in SAT, but not OAT, regression analyses revealed that the expression pattern of genes in the AGE/RAGE/DIAPH1 axis is strongly and positively associated with that of inflammatory and adipogenic markers. Remarkably, particularly in SAT, not OAT, the expression of AGER positively and significantly correlated with HOMA-IR (n = 14; [Formula: see text], [0.338, 1.249]; q = 0.018). CONCLUSIONS:These observations suggest associations of the AGE/RAGE/DIAPH1 axis in the immunometabolic pathophysiology of obesity and insulin resistance, driven, at least in part, through expression and activity of this axis in SAT.
PMID: 34103691
ISSN: 1476-5497
CID: 4903152
Effect of antibiotic treatment on Oxalobacter formigenes colonization of the gut microbiome and urinary oxalate excretion
Nazzal, Lama; Francois, Fritz; Henderson, Nora; Liu, Menghan; Li, Huilin; Koh, Hyunwook; Wang, Chan; Gao, Zhan; Perez, Guillermo Perez; Asplin, John R; Goldfarb, David S; Blaser, Martin J
The incidence of kidney stones is increasing in the US population. Oxalate, a major factor for stone formation, is degraded by gut bacteria reducing its intestinal absorption. Intestinal O. formigenes colonization has been associated with a lower risk for recurrent kidney stones in humans. In the current study, we used a clinical trial of the eradication of Helicobacter pylori to assess the effects of an antibiotic course on O. formigenes colonization, urine electrolytes, and the composition of the intestinal microbiome. Of 69 healthy adult subjects recruited, 19 received antibiotics for H. pylori eradication, while 46 were followed as controls. Serial fecal samples were examined for O. formigenes presence and microbiota characteristics. Urine, collected serially fasting and following a standard meal, was tested for oxalate and electrolyte concentrations. O. formigenes prevalence was 50%. Colonization was significantly and persistently suppressed in antibiotic-exposed subjects but remained stable in controls. Urinary pH increased after antibiotics, but urinary oxalate did not differ between the control and treatment groups. In subjects not on antibiotics, the O. formigenes-positive samples had higher alpha-diversity and significantly differed in Beta-diversity from the O. formigenes-negative samples. Specific taxa varied in abundance in relation to urinary oxalate levels. These studies identified significant antibiotic effects on O. formigenes colonization and urinary electrolytes and showed that overall microbiome structure differed in subjects according to O. formigenes presence. Identifying a consortium of bacterial taxa associated with urinary oxalate may provide clues for the primary prevention of kidney stones in healthy adults.
PMCID:8361114
PMID: 34385560
ISSN: 2045-2322
CID: 5004452
Maternal cecal microbiota transfer rescues early-life antibiotic-induced enhancement of type 1 diabetes in mice
Zhang, Xue-Song; Yin, Yue Sandra; Wang, Jincheng; Battaglia, Thomas; Krautkramer, Kimberly; Li, Wei Vivian; Li, Jackie; Brown, Mark; Zhang, Meifan; Badri, Michelle H; Armstrong, Abigail J S; Strauch, Christopher M; Wang, Zeneng; Nemet, Ina; Altomare, Nicole; Devlin, Joseph C; He, Linchen; Morton, Jamie T; Chalk, John Alex; Needles, Kelly; Liao, Viviane; Mount, Julia; Li, Huilin; Ruggles, Kelly V; Bonneau, Richard A; Dominguez-Bello, Maria Gloria; Bäckhed, Fredrik; Hazen, Stanley L; Blaser, Martin J
Early-life antibiotic exposure perturbs the intestinal microbiota and accelerates type 1 diabetes (T1D) development in the NOD mouse model. Here, we found that maternal cecal microbiota transfer (CMT) to NOD mice after early-life antibiotic perturbation largely rescued the induced T1D enhancement. Restoration of the intestinal microbiome was significant and persistent, remediating the antibiotic-depleted diversity, relative abundance of particular taxa, and metabolic pathways. CMT also protected against perturbed metabolites and normalized innate and adaptive immune effectors. CMT restored major patterns of ileal microRNA and histone regulation of gene expression. Further experiments suggest a gut-microbiota-regulated T1D protection mechanism centered on Reg3γ, in an innate intestinal immune network involving CD44, TLR2, and Reg3γ. This regulation affects downstream immunological tone, which may lead to protection against tissue-specific T1D injury.
PMID: 34289377
ISSN: 1934-6069
CID: 4948332
Two-dimensional multiplexed assay for rapid and deep SARS-CoV-2 serology profiling and for machine learning prediction of neutralization capacity [PrePrint]
Koide, Akiko; Panchenko, Tatyana; Wang, Chan; Thannickal, Sara A; Romero, Larizbeth A; Teng, Kai Wen; Li, Francesca-Zhoufan; Akkappedi, Padma; Corrado, Alexis D; Caro, Jessica; Diefenbach, Catherine; Samanovic, Marie I; Mulligan, Mark J; Hattori, Takamitsu; Stapleford, Kenneth A; Li, Huilin; Koide, Shohei
Antibody responses serve as the primary protection against SARS-CoV-2 infection through neutralization of viral entry into cells. We have developed a two-dimensional multiplex bead binding assay (2D-MBBA) that quantifies multiple antibody isotypes against multiple antigens from a single measurement. Here, we applied our assay to profile IgG, IgM and IgA levels against the spike antigen, its receptor-binding domain and natural and designed mutants. Machine learning algorithms trained on the 2D-MBBA data substantially improve the prediction of neutralization capacity against the authentic SARS-CoV-2 virus of serum samples of convalescent patients. The algorithms also helped identify a set of antibody isotypeâ€"antigen datasets that contributed to the prediction, which included those targeting regions outside the receptor-binding interface of the spike protein. We applied the assay to profile samples from vaccinated, immune-compromised patients, which revealed differences in the antibody profiles between convalescent and vaccinated samples. Our approach can rapidly provide deep antibody profiles and neutralization prediction from essentially a drop of blood without the need of BSL-3 access and provides insights into the nature of neutralizing antibodies. It may be further developed for evaluating neutralizing capacity for new variants and future pathogens.
PMCID:8351774
PMID: 34373852
ISSN: 2692-8205
CID: 5080802
Tobacco smoking and the fecal microbiome in a large, multi-ethnic cohort
Prakash, Ajay; Peters, Brandilyn A; Cobbs, Emilia; Beggs, Dia; Choi, Heesun; Li, Huilin; Hayes, Richard B; Ahn, Jiyoung
BACKGROUND:Increasing evidence suggests that tobacco smoking, a well-known driver of carcinogenesis, influences the gut microbiome; however, these relationships remain understudied in diverse populations. Thus, we performed an analysis of smoking and the gut microbiome in a subset of 803 adults from the multi-ethnic NYU FAMiLI study. METHODS:We assessed fecal microbiota using 16S rRNA gene sequencing, and clustered samples into Amplicon Sequence Variants using QIIME2. We evaluated inferred microbial pathway abundance using PICRUSt. We compared population beta diversity, and relative taxonomic and functional pathway abundance, between never smokers, former smokers, and current smokers. RESULTS:We found that the overall composition of the fecal microbiome in former and current smokers differs significantly from that of never smokers. The taxa Prevotella and Veillonellaceae were enriched in current and former smokers, while the taxa Lachnospira and Tenericutes were depleted, relative to never smokers. These shifts were consistent across racial and ethnic subgroups. Relative to never smokers, the abundance of taxa enriched in current smokers were positively correlated with the imputed abundance of pathways involving smoking-associated toxin breakdown and response to reactive oxygen species (ROS). CONCLUSIONS:Our findings suggest common mechanisms of smoking associated microbial change across racial subgroups, regardless of initial microbiome composition. The correlation of these differentials with ROS exposure pathways may suggest a role for these taxa in the known association between smoking, ROS and carcinogenesis. IMPACT/CONCLUSIONS:Smoking shifts in the microbiome may be independent of initial composition, stimulating further studies on the microbiome in carcinogenesis and cancer prevention.
PMID: 34020999
ISSN: 1538-7755
CID: 4888752