Searched for: in-biosketch:yes
person:lokep01
Specialized dendritic cells induce tumor-promoting IL-10+IL-17+ FoxP3neg regulatory CD4+ T cells in pancreatic carcinoma
Barilla, Rocky M; Diskin, Brian; Caso, Raul Caso; Lee, Ki Buom; Mohan, Navyatha; Buttar, Chandan; Adam, Salma; Sekendiz, Zennur; Wang, Junjie; Salas, Ruben D; Cassini, Marcelo F; Karlen, Jason; Sundberg, Belen; Akbar, Hashem; Levchenko, Dmitry; Gakhal, Inderdeep; Gutierrez, Johana; Wang, Wei; Hundeyin, Mautin; Torres-Hernandez, Alejandro; Leinwand, Joshua; Kurz, Emma; Rossi, Juan A Kochen; Mishra, Ankita; Liria, Miguel; Sanchez, Gustavo; Panta, Jyoti; Loke, P'ng; Aykut, Berk; Miller, George
The drivers and the specification of CD4+ T cell differentiation in the tumor microenvironment and their contributions to tumor immunity or tolerance are incompletely understood. Using models of pancreatic ductal adenocarcinoma (PDA), we show that a distinct subset of tumor-infiltrating dendritic cells (DC) promotes PDA growth by directing a unique TH-program. Specifically, CD11b+CD103- DC predominate in PDA, express high IL-23 and TGF-β, and induce FoxP3neg tumor-promoting IL-10+IL-17+IFNγ+ regulatory CD4+ T cells. The balance between this distinctive TH program and canonical FoxP3+ TREGS is unaffected by pattern recognition receptor ligation and is modulated by DC expression of retinoic acid. This TH-signature is mimicked in human PDA where it is associated with immune-tolerance and diminished patient survival. Our data suggest that CD11b+CD103- DC promote CD4+ T cell tolerance in PDA which may underscore its resistance to immunotherapy.
PMID: 30926808
ISSN: 2041-1723
CID: 3779022
Staphylococcus aureus Leukocidins Target Endothelial DARC to Cause Lethality in Mice
Lubkin, Ashira; Lee, Warren L; Alonzo, Francis; Wang, Changsen; Aligo, Jason; Keller, Matthew; Girgis, Natasha M; Reyes-Robles, Tamara; Chan, Rita; O'Malley, Aidan; Buckley, Peter; Vozhilla, Nikollaq; Vasquez, Marilyn T; Su, Johnny; Sugiyama, Michael; Yeung, Stephen T; Coffre, Maryaline; Bajwa, Sofia; Chen, Eric; Martin, Patricia; Kim, Sang Y; Loomis, Cynthia; Worthen, G Scott; Shopsin, Bo; Khanna, Kamal M; Weinstock, Daniel; Lynch, Anthony Simon; Koralov, Sergei B; Loke, P'ng; Cadwell, Ken; Torres, Victor J
The pathogenesis of Staphylococcus aureus is thought to depend on the production of pore-forming leukocidins that kill leukocytes and lyse erythrocytes. Two leukocidins, Leukocidin ED (LukED) and γ-Hemolysin AB (HlgAB), are necessary and sufficient to kill mice upon infection and toxin challenge. We demonstrate that LukED and HlgAB cause vascular congestion and derangements in vascular fluid distribution that rapidly cause death in mice. The Duffy antigen receptor for chemokines (DARC) on endothelial cells, rather than leukocytes or erythrocytes, is the critical target for lethality. Consistent with this, LukED and HlgAB injure primary human endothelial cells in a DARC-dependent manner, and mice with DARC-deficient endothelial cells are resistant to toxin-mediated lethality. During bloodstream infection in mice, DARC targeting by S. aureus causes increased tissue damage, organ dysfunction, and host death. The potential for S. aureus leukocidins to manipulate vascular integrity highlights the importance of these virulence factors.
PMID: 30799265
ISSN: 1934-6069
CID: 3721612
Single-cell analysis of fate-mapped macrophages reveals heterogeneity, including stem-like properties, during atherosclerosis progression and regression
Lin, Jian-Da; Nishi, Hitoo; Poles, Jordan; Niu, Xiang; Mccauley, Caroline; Rahman, Karishma; Brown, Emily J; Yeung, Stephen T; Vozhilla, Nikollaq; Weinstock, Ada; Ramsey, Stephen A; Fisher, Edward A; Loke, P'ng
Atherosclerosis is a leading cause of death worldwide in industrialized countries. Disease progression and regression are associated with different activation states of macrophages derived from inflammatory monocytes entering the plaques. The features of monocyte-to-macrophage transition and the full spectrum of macrophage activation states during either plaque progression or regression, however, are incompletely established. Here, we use a combination of single-cell RNA sequencing and genetic fate mapping to profile, for the first time to our knowledge, plaque cells derived from CX3CR1+ precursors in mice during both progression and regression of atherosclerosis. The analyses revealed a spectrum of macrophage activation states with greater complexity than the traditional M1 and M2 polarization states, with progression associated with differentiation of CXC3R1+ monocytes into more distinct states than during regression. We also identified an unexpected cluster of proliferating monocytes with a stem cell-like signature, suggesting that monocytes may persist in a proliferating self-renewal state in inflamed tissue, rather than differentiating immediately into macrophages after entering the tissue.
PMID: 30830865
ISSN: 2379-3708
CID: 3722702
Immuno-metabolic profile of human macrophages after Leishmania and Trypanosoma cruzi infection
Ty, Maureen C; Loke, P'ng; Alberola, Jordi; Rodriguez, Ana; Rodriguez-Cortes, Alheli
Macrophages can reprogram their metabolism in response to the surrounding stimuli, which affects their capacity to kill intracellular pathogens. We have investigated the metabolic and immune status of human macrophages after infection with the intracellular trypanosomatid parasites Leishmania donovani, L. amazonensis and T. cruzi and their capacity to respond to a classical polarizing stimulus (LPS and IFN-γ). We found that macrophages infected with Leishmania preferentially upregulate oxidative phosphorylation, which could be contributed by both host cell and parasite, while T. cruzi infection did not significantly increase glycolysis or oxidative phosphorylation. Leishmania and T. cruzi infect macrophages without triggering a strong inflammatory cytokine response, but infection does not prevent a potent response to LPS and IFN-γ. Infection appears to prime macrophages, since the cytokine response to activation with LPS and IFN-γ is more intense in infected macrophages compared to uninfected ones. Metabolic polarization in macrophages can influence infection and immune evasion of these parasites since preventing macrophage cytokine responses would help parasites to establish a persistent infection. However, macrophages remain responsive to classical inflammatory stimuli and could still trigger inflammatory cytokine secretion by macrophages.
PMID: 31841511
ISSN: 1932-6203
CID: 4242152
Enrichment of gut-derived Fusobacterium is associated with suboptimal immune recovery in HIV-infected individuals
Lee, Soo Ching; Chua, Ling Ling; Yap, Siew Hwei; Khang, Tsung Fei; Leng, Chan Yoon; Raja Azwa, Raja Iskandar; Lewin, Sharon R; Kamarulzaman, Adeeba; Woo, Yin Ling; Lim, Yvonne Ai Lian; Loke, P'ng; Rajasuriar, Reena
We explored the gut microbiota profile among HIV-infected individuals with diverse immune recovery profiles following long-term suppressive ART and investigated the relationship between the altered bacteria with markers of immune dysfunction. The microbiota profile of rectal swabs from 26 HIV-infected individuals and 20 HIV-uninfected controls were examined. Patients were classified as suboptimal responders, sIR (n = 10, CD4 T-cell <350 cells/ul) and optimal responders, oIR (n = 16, CD4 T-cell >500 cells/ul) after a minimum of 2 years on suppressive ART. Canonical correlation analysis(CCA) and multiple regression modelling were used to explore the association between fecal bacterial taxa abundance and immunological profiles in optimal and suboptimal responders. We found Fusobacterium was significantly enriched among the HIV-infected and the sIR group. CCA results showed that Fusobacterium abundance was negatively correlated with CD4 T-cell counts, but positively correlated with CD4 T-cell activation and CD4 Tregs. Multiple linear regression analysis adjusted for age, baseline CD4 T-cell count, antibiotic exposure and MSM status indicated that higher Fusobacterium relative abundance was independently associated with poorer CD4 T-cell recovery following ART. Enrichment of Fusobacterium was associated with reduced immune recovery and persistent immune dysfunction following ART. Modulating the abundance of this bacterial taxa in the gut may be a viable intervention to improve immune reconstitution in our setting.
PMID: 30250162
ISSN: 2045-2322
CID: 3314152
Getting a Taste for Parasites in the Gut
Loke, P'ng; Cadwell, Ken
How type 2 immune responses are initiated is obscure. Nadjsombati et al. (2018), along with two other studies (Lei et al., 2018; Schneider et al., 2018), show that tuft cells can initiate type 2 responses by recognizing the metabolite succinate produced by intestinal parasites.
PMID: 30021142
ISSN: 1097-4180
CID: 3200862
Heterogeneity of plaque macrophages derived from CX3CR1+monocyte precursors in atherosclerosis progression and regression at a single-cell level [Meeting Abstract]
Lin, Jian-Da; Nishi, Hitoo; Poles, Jordan; Mccauley, Caroline; Rahman, Karishma; Hine, Ashley; Vozhilla, Nikollaq; Fisher, Edward A.; Loke, P'ng
ISI:000459977702293
ISSN: 0022-1767
CID: 3727612
Rapid environmental effects on gut nematode susceptibility in rewilded mice
Leung, Jacqueline M; Budischak, Sarah A; Chung The, Hao; Hansen, Christina; Bowcutt, Rowann; Neill, Rebecca; Shellman, Mitchell; Loke, P'ng; Graham, Andrea L
Genetic and environmental factors shape host susceptibility to infection, but how and how rapidly environmental variation might alter the susceptibility of mammalian genotypes remains unknown. Here, we investigate the impacts of seminatural environments upon the nematode susceptibility profiles of inbred C57BL/6 mice. We hypothesized that natural exposure to microbes might directly (e.g., via trophic interactions) or indirectly (e.g., via microbe-induced immune responses) alter the hatching, growth, and survival of nematodes in mice housed outdoors. We found that while C57BL/6 mice are resistant to high doses of nematode (Trichuris muris) eggs under clean laboratory conditions, exposure to outdoor environments significantly increased their susceptibility to infection, as evidenced by increased worm burdens and worm biomass. Indeed, mice kept outdoors harbored as many worms as signal transducer and activator of transcription 6 (STAT6) knockout mice, which are genetically deficient in the type 2 immune response essential for clearing nematodes. Using 16S ribosomal RNA sequencing of fecal samples, we discovered enhanced microbial diversity and specific bacterial taxa predictive of nematode burden in outdoor mice. We also observed decreased type 2 and increased type 1 immune responses in lamina propria and mesenteric lymph node (MLN) cells from infected mice residing outdoors. Importantly, in our experimental design, different groups of mice received nematode eggs either before or after moving outdoors. This contrasting timing of rewilding revealed that enhanced hatching of worms was not sufficient to explain the increased worm burdens; instead, microbial enhancement and type 1 immune facilitation of worm growth and survival, as hypothesized, were also necessary to explain our results. These findings demonstrate that environment can rapidly and significantly shape gut microbial communities and mucosal responses to nematode infections, leading to variation in parasite expulsion rates among genetically similar hosts.
PMCID:5843147
PMID: 29518091
ISSN: 1545-7885
CID: 2974922
Recent Advances in Type-2-Cell-Mediated Immunity: Insights from Helminth Infection [Correction]
Harris, Nicola L; Loke, P'ng
PMID: 29466760
ISSN: 1097-4180
CID: 2991002
Assessing the Mouse Intestinal Microbiota in Settings of Type-2 Immune Responses
Tang, Mei San; Bowcutt, Rowann; Loke, P'ng
The microbial communities that reside within the mammalian host play important roles in the development of a robust host immune system. With the advent of sequencing technology and barcoding strategy of the bacterial 16S ribosomal RNA (rRNA) gene, microbiota studies are becoming more economical but also more important in many immunology studies. Here, we described a representative study protocol to characterize how the microbiota changes during an intestinal helminth infection, with emphasis on subtle aspects of the experimental design that are critical for data interpretation.
PMID: 29956164
ISSN: 1940-6029
CID: 3162612