Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:moorek09

Total Results:

153


Inhibition of MicroRNA-33 Reprograms the Transcriptional Landscape and Kinetic Processes of Immune Cells to Promote Atherosclerotic Plaque Regression [Meeting Abstract]

Afonso, Milessa S; Sharma, Monika; Schlegel, Paul Martin; Khodadadi-Jamayran, Alireza; van Solingen, Coen; Shanley, Lianne; Koelwyn, Graeme J; Beckett, Lauren; Peled, Daniel; Rahman, Karishma; Ouimet, Mireille; Fisher, Edward A; Moore, Kathryn J
ORIGINAL:0014682
ISSN: 1524-4636
CID: 4533672

LDL Receptor Pathway Regulation by miR-224 and miR-520d

Salerno, Alessandro G; van Solingen, Coen; Scotti, Elena; Wanschel, Amarylis C B A; Afonso, Milessa S; Oldebeken, Scott R; Spiro, Westley; Tontonoz, Peter; Rayner, Katey J; Moore, Kathryn J
MicroRNAs (miRNA) have emerged as important post-transcriptional regulators of metabolic pathways that contribute to cellular and systemic lipoprotein homeostasis. Here, we identify two conserved miRNAs, miR-224, and miR-520d, which target gene networks regulating hepatic expression of the low-density lipoprotein (LDL) receptor (LDLR) and LDL clearance. In silico prediction of miR-224 and miR-520d target gene networks showed that they each repress multiple genes impacting the expression of the LDLR, including the chaperone molecules PCSK9 and IDOL that limit LDLR expression at the cell surface and the rate-limiting enzyme for cholesterol synthesis HMGCR, which is the target of LDL-lowering statin drugs. Using gain- and loss-of-function studies, we tested the role of miR-224 and miR-520d in the regulation of those predicted targets and their impact on LDLR expression. We show that overexpression of miR-224 or miR-520d dose-dependently reduced the activity of PCSK9, IDOL, and HMGCR 3'-untranslated region (3'-UTR)-luciferase reporter constructs and that this repression was abrogated by mutation of the putative miR-224 or miR-520d response elements in the PCSK9, IDOL, and HMGCR 3'-UTRs. Compared to a control miRNA, overexpression of miR-224 or miR-520d in hepatocytes inhibited PCSK9, IDOL, and HMGCR mRNA and protein levels and decreased PCSK9 secretion. Furthermore, miR-224 and miR-520d repression of PCSK9, IDOL, and HMGCR was associated with an increase in LDLR protein levels and cell surface expression, as well as enhanced LDL binding. Notably, the effects of miR-224 and miR-520d were additive to the effects of statins in upregulating LDLR expression. Finally, we show that overexpression of miR-224 in the livers of Ldlr+/- mice using lipid nanoparticle-mediated delivery resulted in a 15% decrease in plasma levels of LDL cholesterol, compared to a control miRNA. Together, these findings identify roles for miR-224 and miR-520d in the posttranscriptional control of LDLR expression and function.
PMCID:7256473
PMID: 32528976
ISSN: 2297-055x
CID: 4478612

Connecting Transcriptional and Functional Macrophage Heterogeneity in Atherosclerosis [Editorial]

Schlegel, Martin; Koelwyn, Graeme J; Moore, Kathryn J
PMID: 31804906
ISSN: 1524-4571
CID: 4250012

Platelet regulation of myeloid suppressor of cytokine signaling 3 accelerates atherosclerosis

Barrett, Tessa J; Schlegel, Martin; Zhou, Felix; Gorenchtein, Mike; Bolstorff, Jennifer; Moore, Kathryn J; Fisher, Edward A; Berger, Jeffrey S
Platelets are best known as mediators of hemostasis and thrombosis; however, their inflammatory effector properties are increasingly recognized. Atherosclerosis, a chronic vascular inflammatory disease, represents the interplay between lipid deposition in the artery wall and unresolved inflammation. Here, we reveal that platelets induce monocyte migration and recruitment into atherosclerotic plaques, resulting in plaque platelet-macrophage aggregates. In Ldlr-/- mice fed a Western diet, platelet depletion decreased plaque size and necrotic area and attenuated macrophage accumulation. Platelets drive atherogenesis by skewing plaque macrophages to an inflammatory phenotype, increasing myeloid suppressor of cytokine signaling 3 (SOCS3) expression and reducing the Socs1:Socs3 ratio. Platelet-induced Socs3 expression regulates plaque macrophage reprogramming by promoting inflammatory cytokine production (Il6, Il1b, and Tnfa) and impairing phagocytic capacity, dysfunctions that contribute to unresolved inflammation and sustained plaque growth. Translating our data to humans with cardiovascular disease, we found that women with, versus without, myocardial infarction have up-regulation of SOCS3, lower SOCS1:SOCS3, and increased monocyte-platelet aggregate. A second cohort of patients with lower extremity atherosclerosis demonstrated that SOCS3 and the SOCS1:SOCS3 ratio correlated with platelet activity and inflammation. Collectively, these data provide a causative link between platelet-mediated myeloid inflammation and dysfunction, SOCS3, and cardiovascular disease. Our findings define an atherogenic role of platelets and highlight how, in the absence of thrombosis, platelets contribute to inflammation.
PMID: 31694925
ISSN: 1946-6242
CID: 4175802

Regulation of Stress Granule Formation by Inflammation, Vascular Injury, and Atherosclerosis

Herman, Allison B; Silva Afonso, Milessa; Kelemen, Sheri E; Ray, Mitali; Vrakas, Christine N; Burke, Amy C; Scalia, Rosario G; Moore, Kathryn; Autieri, Michael V
OBJECTIVE:mice revealed an increase in the stress granule-specific markers Ras-G3BP (GTPase-activating protein SH3 domain-binding protein) and PABP (poly-A-binding protein) in intimal macrophages and smooth muscle cells that correlated with disease progression. In vitro, PABP+ and G3BP+ SGs were rapidly induced in VSMC and bone marrow-derived macrophages in response to atherosclerotic stimuli, including oxidized low-density lipoprotein and mediators of mitochondrial or oxidative stress. We observed an increase in eIF2α phosphorylation, a requisite for stress granule formation, in cells exposed to these stimuli. Interestingly, SG formation, PABP expression, and eIF2α phosphorylation in VSMCs is reversed by treatment with the anti-inflammatory cytokine interleukin-19. Microtubule inhibitors reduced stress granule accumulation in VSMC, suggesting cytoskeletal regulation of stress granule formation. SG formation in VSMCs was also observed in other vascular disease pathologies, including vascular restenosis. Reduction of SG component G3BP1 by siRNA significantly altered expression profiles of inflammatory, apoptotic, and proliferative genes. CONCLUSIONS:These results indicate that SG formation is a common feature of the vascular response to injury and disease, and that modification of inflammation reduces stress granule formation in VSMC.
PMID: 31462091
ISSN: 1524-4636
CID: 4054492

Long non-coding RNAs regulating macrophage functions in homeostasis and disease

Scacalossi, Kaitlyn R; van Solingen, Coen; Moore, Kathryn J
Non-coding RNAs, once considered "genomic junk", are now known to play central roles in the dynamic control of transcriptional and post-transcriptional gene expression. Long non-coding RNAs (lncRNAs) are an expansive class of transcripts broadly described as greater than 200 nucleotides in length. While most lncRNAs are species-specific, their lack of conservation does not imbue a lack of function. LncRNAs have been found to regulate numerous diverse biological functions, including those central to macrophage differentiation and activation. Through their ability to form RNA-DNA, RNA-protein and RNA-RNA interactions, lncRNAs have been implicated in the regulation of myeloid lineage determination, and innate and adaptive immune functions, among others. In this review, we discuss recent advances, current challenges and future opportunities in understanding the roles of lncRNAs in macrophage functions in homeostasis and disease.
PMCID:6136978
PMID: 29548902
ISSN: 1879-3649
CID: 3001332

Defining Macrophages in the Heart One Cell at a Time

Koelwyn, Graeme J; Moore, Kathryn J
Macrophages in the heart have dual roles in injury and repair after myocardial infarction, and understanding the two sides of this coin using traditional 'bulk cell' technologies has been challenging. By combining genetic fate-mapping and single-cell transcriptomics, a new study (Nat. Immunol. 2019;20:29-39) reveals how distinct macrophage populations expand and diverge across the healthy heart and after infarction.
PMID: 30745266
ISSN: 1471-4981
CID: 3656142

Targeting inflammation in CVD: advances and challenges

Moore, Kathryn J
PMID: 30560921
ISSN: 1759-5010
CID: 3554902

The long noncoding RNA CHROME regulates cholesterol homeostasis in primate

Hennessy, Elizabeth J; van Solingen, Coen; Scacalossi, Kaitlyn R; Ouimet, Mireille; Afonso, Milessa S; Prins, Jurrien; Koelwyn, Graeme J; Sharma, Monika; Ramkhelawon, Bhama; Carpenter, Susan; Busch, Albert; Chernogubova, Ekaterina; Matic, Ljubica Perisic; Hedin, Ulf; Maegdefessel, Lars; Caffrey, Brian E; Hussein, Maryem A; Ricci, Emiliano P; Temel, Ryan E; Garabedian, Michael J; Berger, Jeffrey S; Vickers, Kasey C; Kanke, Matthew; Sethupathy, Praveen; Teupser, Daniel; Holdt, Lesca M; Moore, Kathryn J
The human genome encodes thousands of long non-coding RNAs (lncRNAs), the majority of which are poorly conserved and uncharacterized. Here we identify a primate-specific lncRNA (CHROME), elevated in the plasma and atherosclerotic plaques of individuals with coronary artery disease, that regulates cellular and systemic cholesterol homeostasis. LncRNA CHROME expression is influenced by dietary and cellular cholesterol via the sterol-activated liver X receptor transcription factors, which control genes mediating responses to cholesterol overload. Using gain- and loss-of-function approaches, we show that CHROME promotes cholesterol efflux and HDL biogenesis by curbing the actions of a set of functionally related microRNAs that repress genes in those pathways. CHROME knockdown in human hepatocytes and macrophages increases levels of miR-27b, miR-33a, miR-33b and miR-128, thereby reducing expression of their overlapping target gene networks and associated biologic functions. In particular, cells lacking CHROME show reduced expression of ABCA1, which regulates cholesterol efflux and nascent HDL particle formation. Collectively, our findings identify CHROME as a central component of the non-coding RNA circuitry controlling cholesterol homeostasis in humans.
PMID: 31410392
ISSN: 2522-5812
CID: 4679482

Single-Cell RNA Sequencing of Visceral Adipose Tissue Leukocytes Reveals that Caloric Restriction Following Obesity Promotes the Accumulation of a Distinct Macrophage Population with Features of Phagocytic Cells

Weinstock, Ada; Brown, Emily J; Garabedian, Michela L; Pena, Stephanie; Sharma, Monika; Lafaille, Juan; Moore, Kathryn J; Fisher, Edward A
Obesity can lead to type 2 diabetes and is an epidemic. A major contributor to its adverse effects is inflammation of the visceral adipose tissue (VAT). Life-long caloric restriction (CR), in contrast, results in extended lifespan, enhanced glucose tolerance/insulin sensitivity, and other favorable phenotypes. The effects of CR following obesity are incompletely established, but studies show multiple benefits. Many leukocyte types, macrophages predominantly, reside in VAT in homeostatic and pathological states. CR following obesity transiently increases VAT macrophage content prior to resolution of inflammation and obesity, suggesting that macrophage content and phenotype play critical roles. Here, we examined the heterogeneity of VAT leukocytes and the effects of obesity and CR. In general, our single-cell RNA-sequencing data demonstrate that macrophages are the most abundant and diverse subpopulation of leukocytes in VAT. Obesity induced significant transcriptional changes in all 15 leukocyte subpopulations, with many genes showing coordinated changes in expression across the leukocyte subpopulations. Additionally, obese VAT displayed expansion of one major macrophage subpopulation, which, in silico, was enriched in lipid binding and metabolic processes. This subpopulation returned from dominance in obesity to lean proportions after only 2 weeks of CR, although the pattern of gene expression overall remained similar. Surprisingly, CR VAT is dominated by a different macrophage subpopulation, which is absent in lean conditions. This subpopulation is enriched in genes related to phagocytosis and we postulate that its function includes clearance of dead cells, as well as excess lipids, contributing to limiting VAT inflammation and restoration of the homeostatic state.
PMCID:6687332
PMID: 31396408
ISSN: 2084-6835
CID: 4034452