Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:muelle01

Total Results:

57


Effects of ligand activation of peroxisome proliferator-activated receptor gamma in human prostate cancer

Mueller, E; Smith, M; Sarraf, P; Kroll, T; Aiyer, A; Kaufman, D S; Oh, W; Demetri, G; Figg, W D; Zhou, X P; Eng, C; Spiegelman, B M; Kantoff, P W
Peroxisome proliferator-activated receptor gamma (PPARgamma) is a nuclear hormone receptor that plays a key role in the differentiation of adipocytes. Activation of this receptor in liposarcomas and breast and colon cancer cells also induces cell growth inhibition and differentiation. In the present study, we show that PPARgamma is expressed in human prostate adenocarcinomas and cell lines derived from these tumors. Activation of this receptor with specific ligands exerts an inhibitory effect on the growth of prostate cancer cell lines. Further, we show that prostate cancer and cell lines do not have intragenic mutations in the PPARgamma gene, although 40% of the informative tumors have hemizygous deletions of this gene. Based on our preclinical data, we conducted a phase II clinical study in patients with advanced prostate cancer using troglitazone, a PPARgamma ligand used for the treatment of type 2 diabetes. Forty-one men with histologically confirmed prostate cancer and no symptomatic metastatic disease were treated orally with troglitazone. An unexpectedly high incidence of prolonged stabilization of prostate-specific antigen was seen in patients treated with troglitazone. In addition, one patient had a dramatic decrease in serum prostate-specific antigen to nearly undetectable levels. These data suggest that PPARgamma may serve as a biological modifier in human prostate cancer and its therapeutic potential in this disease should be further investigated.
PMCID:27136
PMID: 10984506
ISSN: 0027-8424
CID: 2574172

PAX8-PPARgamma1 fusion oncogene in human thyroid carcinoma [corrected]

Kroll, T G; Sarraf, P; Pecciarini, L; Chen, C J; Mueller, E; Spiegelman, B M; Fletcher, J A
Chromosomal translocations that encode fusion oncoproteins have been observed consistently in leukemias/lymphomas and sarcomas but not in carcinomas, the most common human cancers. Here, we report that t(2;3)(q13;p25), a translocation identified in a subset of human thyroid follicular carcinomas, results in fusion of the DNA binding domains of the thyroid transcription factor PAX8 to domains A to F of the peroxisome proliferator-activated receptor (PPAR) gamma1. PAX8-PPARgamma1 mRNA and protein were detected in 5 of 8 thyroid follicular carcinomas but not in 20 follicular adenomas, 10 papillary carcinomas, or 10 multinodular hyperplasias. PAX8-PPARgamma1 inhibited thiazolidinedione-induced transactivation by PPARgamma1 in a dominant negative manner. The experiments demonstrate an oncogenic role for PPARgamma and suggest that PAX8-PPARgamma1 may be useful in the diagnosis and treatment of thyroid carcinoma.
PMID: 10958784
ISSN: 0036-8075
CID: 2574162

Degradation of the peroxisome proliferator-activated receptor gamma is linked to ligand-dependent activation

Hauser, S; Adelmant, G; Sarraf, P; Wright, H M; Mueller, E; Spiegelman, B M
The nuclear hormone receptor peroxisome proliferator-activated receptor (PPAR) gamma is a ligand-activated transcription factor that regulates several crucial biological processes such as adipogenesis, glucose homeostasis, and cell growth. It is also the functional receptor for a new class of insulin-sensitizing drugs, the thiazolidinediones, now widely used in the treatment of type 2 diabetes mellitus. Here we report that PPARgamma protein levels are significantly reduced in adipose cells and fibroblasts in response to specific ligands such as thiazolidinediones. Studies with several doses of different ligands illustrate that degradation of PPARgamma correlates well with the ability of ligands to activate this receptor. However, analyses of PPARgamma mutants show that, although degradation does not strictly depend on the transcriptional activity of the receptor, it is dependent upon the ligand-gated activation function 2 (AF2) domain. Proteasome inhibitors inhibited the down-regulation of PPARgamma and ligand activation enhanced the ubiquitination of this receptor. These data indicate that, although ligand binding and activation of the AF2 domain increase the transcriptional function of PPARgamma, these same processes also induce ubiquitination and subsequent degradation of this receptor by the proteasome.
PMID: 10748014
ISSN: 0021-9258
CID: 2574142

Over-representation of PPARgamma sequence variants in sporadic cases of glioblastoma multiforme: preliminary evidence for common low penetrance modifiers for brain tumour risk in the general population

Zhou, X P; Smith, W M; Gimm, O; Mueller, E; Gao, X; Sarraf, P; Prior, T W; Plass, C; von Deimling, A; Black, P M; Yates, A J; Eng, C
PPARgamma, the gamma isoform of a family of peroxisome proliferator activated receptors, plays a key role in adipocyte differentiation. Recently, its broad expression in multiple tissues and several epithelial cancers has been shown. Further, somatic loss of function mutations in PPARgamma have been found in primary colorectal carcinomas. We sought to determine if somatic high penetrance mutations in this gene might also play a role in glioblastoma multiforme (GBM). We also examined this gene to determine if common low penetrance polymorphic alleles might lend low level susceptibility to GBM in the general population. No somatic high penetrance mutations were detected in 96 sporadic GBMs. However, polymorphic alleles at codons 12 and 449 were significantly over-represented among the 27 unrelated American patients with sporadic GBM compared to 80 race matched controls. While nine (33%) were heterozygous for the P12A variant, c.34C/G (cytosine to guanine change at nucleotide 34), 12 (15%) controls were heterozygous for P12A (p<0.05). Similarly, 13 of 26 (50%) glioblastoma patients compared to 10 of 80 (12%) normal controls were found to have the heterozygous H449H polymorphism (p<0.001). The over-representation of H449H in glioblastoma patients was confirmed with a second validation set of American patients. When both American series were combined, polymorphic H449H was over-represented among cases versus controls (p<0.001) and there was a similar trend (p=0.07) for P12A. The precise mechanism for this association is unknown but these PPARgamma polymorphisms may be acting in a low penetrance predisposing manner. However, these associations were not found in a German population, possibly arguing that if these variants are in linkage disequilibrium with a third locus, then this effect is relatively new, after the settlement of the American colonies.
PMCID:1734615
PMID: 10851250
ISSN: 1468-6244
CID: 2574152

Loss-of-function mutations in PPAR gamma associated with human colon cancer

Sarraf, P; Mueller, E; Smith, W M; Wright, H M; Kum, J B; Aaltonen, L A; de la Chapelle, A; Spiegelman, B M; Eng, C
The gamma isoform of the peroxisome proliferator-activated receptor, PPAR gamma, regulates adipocyte differentiation and has recently been shown to be expressed in neoplasia of the colon and other tissues. We have found four somatic PPAR gamma mutations among 55 sporadic colon cancers: one nonsense, one frameshift, and two missense mutations. Each greatly impaired the function of the protein. c.472delA results in deletion of the entire ligand binding domain. Q286P and K319X retain a total or partial ligand binding domain but lose the ability to activate transcription through a failure to bind to ligands. R288H showed a normal response to synthetic ligands but greatly decreased transcription and binding when exposed to natural ligands. These data indicate that colon cancer in humans is associated with loss-of-function mutations in PPAR gamma.
PMID: 10394368
ISSN: 1097-2765
CID: 2574132

Induction of solid tumor differentiation by the peroxisome proliferator-activated receptor-gamma ligand troglitazone in patients with liposarcoma [Case Report]

Demetri, G D; Fletcher, C D; Mueller, E; Sarraf, P; Naujoks, R; Campbell, N; Spiegelman, B M; Singer, S
Agonist ligands for the nuclear receptor peroxisome proliferator-activated receptor-gamma have been shown to induce terminal differentiation of normal preadipocytes and human liposarcoma cells in vitro. Because the differentiation status of liposarcoma is predictive of clinical outcomes, modulation of the differentiation status of a tumor may favorably impact clinical behavior. We have conducted a clinical trial for treatment of patients with advanced liposarcoma by using the peroxisome proliferator-activated receptor-gamma ligand troglitazone, in which extensive correlative laboratory studies of tumor differentiation were performed. We report here the results of three patients with intermediate to high-grade liposarcomas in whom troglitazone administration induced histologic and biochemical differentiation in vivo. Biopsies of tumors from each of these patients while on troglitazone demonstrated histologic evidence of extensive lipid accumulation by tumor cells and substantial increases in NMR-detectable tumor triglycerides compared with pretreatment biopsies. In addition, expression of several mRNA transcripts characteristic of differentiation in the adipocyte lineage was induced. There was also a marked reduction in immunohistochemical expression of Ki-67, a marker of cell proliferation. Together, these data indicate that terminal adipocytic differentiation was induced in these malignant tumors by troglitazone. These results indicate that lineage-appropriate differentiation can be induced pharmacologically in a human solid tumor.
PMCID:22401
PMID: 10097144
ISSN: 0027-8424
CID: 2574122

Differentiation and reversal of malignant changes in colon cancer through PPARgamma

Sarraf, P; Mueller, E; Jones, D; King, F J; DeAngelo, D J; Partridge, J B; Holden, S A; Chen, L B; Singer, S; Fletcher, C; Spiegelman, B M
PPARgamma is a nuclear receptor that has a dominant regulatory role in differentiation of cells of the adipose lineage, and has recently been shown to be expressed in the colon. We show here that PPARgamma is expressed at high levels in both well- and poorly-differentiated adenocarcinomas, in normal colonic mucosa and in human colon cancer cell lines. Ligand activation of this receptor in colon cancer cells causes a considerable reduction in linear and clonogenic growth, increased expression of carcinoembryonic antigen and the reversal of many gene expression events specifically associated with colon cancer. Transplantable tumors derived from human colon cancer cells show a significant reduction of growth when mice are treated with troglitazone, a PPARgamma ligand. These results indicate that the growth and differentiation of colon cancer cells can be modulated through PPARgamma.
PMID: 9734398
ISSN: 1078-8956
CID: 2574302

Terminal differentiation of human breast cancer through PPAR gamma

Mueller, E; Sarraf, P; Tontonoz, P; Evans, R M; Martin, K J; Zhang, M; Fletcher, C; Singer, S; Spiegelman, B M
We have previously demonstrated that PPAR gamma stimulates the terminal differentiation of adipocyte precursors when activated by synthetic ligands, such as the antidiabetic thiazolidinedione (TZD) drugs. We show here that PPAR gamma is expressed at significant levels in human primary and metastatic breast adenocarcinomas. Ligand activation of this receptor in cultured breast cancer cells causes extensive lipid accumulation, changes in breast epithelial gene expression associated with a more differentiated, less malignant state, and a reduction in growth rate and clonogenic capacity of the cells. Inhibition of MAP kinase, shown previously to be a powerful negative regulator of PPAR gamma, improves the TZD ligand sensitivity of nonresponsive cells. These data suggest that the PPAR gamma transcriptional pathway can induce terminal differentiation of malignant breast epithelial cells and thus may provide a novel, nontoxic therapy for human breast cancer.
PMID: 9660931
ISSN: 1097-2765
CID: 2574292

Nutritional and insulin regulation of fatty acid synthetase and leptin gene expression through ADD1/SREBP1

Kim, J B; Sarraf, P; Wright, M; Yao, K M; Mueller, E; Solanes, G; Lowell, B B; Spiegelman, B M
The ability to regulate specific genes of energy metabolism in response to fasting and feeding is an important adaptation allowing survival of intermittent food supplies. However, little is known about transcription factors involved in such responses in higher organisms. We show here that gene expression in adipose tissue for adipocyte determination differentiation dependent factor (ADD) 1/sterol regulatory element binding protein (SREBP) 1, a basic-helix-loop-helix protein that has a dual DNA-binding specificity, is reduced dramatically upon fasting and elevated upon refeeding; this parallels closely the regulation of two adipose cell genes that are crucial in energy homeostasis, fatty acid synthetase (FAS) and leptin. This elevation of ADD1/SREBP1, leptin, and FAS that is induced by feeding in vivo is mimicked by exposure of cultured adipocytes to insulin, the classic hormone of the fed state. We also show that the promoters for both leptin and FAS are transactivated by ADD1/SREBP1. A mutation in the basic domain of ADD1/SREBP1 that allows E-box binding but destroys sterol regulatory element-1 binding prevents leptin gene transactivation but has no effect on the increase in FAS promoter function. Molecular dissection of the FAS promoter shows that most if not all of this action of ADD1/SREBP1 is through an E-box motif at -64 to -59, contained with a sequence identified previously as the major insulin response element of this gene. These results indicate that ADD1/SREBP1 is a key transcription factor linking changes in nutritional status and insulin levels to the expression of certain genes that regulate systemic energy metabolism.
PMCID:508533
PMID: 9421459
ISSN: 0021-9738
CID: 2574282

Terminal differentiation of human liposarcoma cells induced by ligands for peroxisome proliferator-activated receptor gamma and the retinoid X receptor

Tontonoz, P; Singer, S; Forman, B M; Sarraf, P; Fletcher, J A; Fletcher, C D; Brun, R P; Mueller, E; Altiok, S; Oppenheim, H; Evans, R M; Spiegelman, B M
Induction of terminal differentiation represents a promising therapeutic approach to certain human malignancies. The peroxisome proliferator-activated receptor gamma (PPAR gamma) and the retinoid X receptor alpha (RXR alpha) form a heterodimeric complex that functions as a central regulator of adipocyte differentiation. Natural and synthetic ligands for both receptors have been identified. We demonstrate here that PPAR gamma is expressed at high levels in each of the major histologic types of human liposarcoma. Moreover, primary human liposarcoma cells can be induced to undergo terminal differentiation by treatment with the PPAR gamma ligand pioglitazone, suggesting that the differentiation block in these cells can be overcome by maximal activation of the PPAR pathway. We further demonstrate that RXR-specific ligands are also potent adipogenic agents in cells expressing the PPAR gamma/RXR alpha heterodimer, and that simultaneous treatment of liposarcoma cells with both PPAR gamma- and RXR-specific ligands results in an additive stimulation of differentiation. Liposarcoma cell differentiation is characterized by accumulation of intracellular lipid, induction of adipocyte-specific genes, and withdrawal from the cell cycle. These results suggest that PPAR gamma ligands such as thiazolidinediones and RXR-specific retinoids may be useful therapeutic agents for the treatment of liposarcoma.
PMCID:19300
PMID: 8990192
ISSN: 0027-8424
CID: 2574272