Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:neubet01

Total Results:

214


MACF1 links Rapsyn to microtubule- and actin-binding proteins to maintain neuromuscular synapses

Oury, Julien; Liu, Yun; Töpf, Ana; Todorovic, Slobodanka; Hoedt, Esthelle; Preethish-Kumar, Veeramani; Neubert, Thomas A; Lin, Weichun; Lochmüller, Hanns; Burden, Steven J
Complex mechanisms are required to form neuromuscular synapses, direct their subsequent maturation, and maintain the synapse throughout life. Transcriptional and post-translational pathways play important roles in synaptic differentiation and direct the accumulation of the neurotransmitter receptors, acetylcholine receptors (AChRs), to the postsynaptic membrane, ensuring for reliable synaptic transmission. Rapsyn, an intracellular peripheral membrane protein that binds AChRs, is essential for synaptic differentiation, but how Rapsyn acts is poorly understood. We screened for proteins that coisolate with AChRs in a Rapsyn-dependent manner and show that microtubule actin cross linking factor 1 (MACF1), a scaffolding protein with binding sites for microtubules (MT) and actin, is concentrated at neuromuscular synapses, where it binds Rapsyn and serves as a synaptic organizer for MT-associated proteins, EB1 and MAP1b, and the actin-associated protein, Vinculin. MACF1 plays an important role in maintaining synaptic differentiation and efficient synaptic transmission in mice, and variants in MACF1 are associated with congenital myasthenia in humans.
PMID: 30842214
ISSN: 1540-8140
CID: 3724072

Altered steady state and activity-dependent de novo protein expression in fragile X syndrome

Bowling, Heather; Bhattacharya, Aditi; Zhang, Guoan; Alam, Danyal; Lebowitz, Joseph Z; Bohm-Levine, Nathaniel; Lin, Derek; Singha, Priyangvada; Mamcarz, Maggie; Puckett, Rosemary; Zhou, Lili; Aryal, Sameer; Sharp, Kevin; Kirshenbaum, Kent; Berry-Kravis, Elizabeth; Neubert, Thomas A; Klann, Eric
Whether fragile X mental retardation protein (FMRP) target mRNAs and neuronal activity contributing to elevated basal neuronal protein synthesis in fragile X syndrome (FXS) is unclear. Our proteomic experiments reveal that the de novo translational profile in FXS model mice is altered at steady state and in response to metabotropic glutamate receptor (mGluR) stimulation, but the proteins expressed differ under these conditions. Several altered proteins, including Hexokinase 1 and Ras, also are expressed in the blood of FXS model mice and pharmacological treatments previously reported to ameliorate phenotypes modify their abundance in blood. In addition, plasma levels of Hexokinase 1 and Ras differ between FXS patients and healthy volunteers. Our data suggest that brain-based de novo proteomics in FXS model mice can be used to find altered expression of proteins in blood that could serve as disease-state biomarkers in individuals with FXS.
PMCID:6461708
PMID: 30979884
ISSN: 2041-1723
CID: 3809482

Tau antibody chimerization alters its charge and binding, thereby reducing its cellular uptake and efficacy

Congdon, Erin E; Chukwu, Jessica E; Shamir, Dov B; Deng, Jingjing; Ujla, Devyani; Sait, Hameetha B R; Neubert, Thomas A; Kong, Xiang-Peng; Sigurdsson, Einar M
BACKGROUND:Bringing antibodies from pre-clinical studies to human trials requires humanization, but this process may alter properties that are crucial for efficacy. Since pathological tau protein is primarily intraneuronal in Alzheimer's disease, the most efficacious antibodies should work both intra- and extracellularly. Thus, changes which impact uptake or antibody binding will affect antibody efficacy. METHODS:Initially, we examined four tau mouse monoclonal antibodies with naturally differing charges. We quantified their neuronal uptake, and efficacy in preventing toxicity and pathological seeding induced by human-derived pathological tau. Later, we generated a human chimeric 4E6 (h4E6), an antibody with well documented efficacy in multiple tauopathy models. We compared the uptake and efficacy of unmodified and chimeric antibodies in neuronal and differentiated neuroblastoma cultures. Further, we analyzed tau binding using ELISA assays. FINDINGS/RESULTS:Neuronal uptake of tau antibodies and their efficacy strongly depends on antibody charge. Additionally, their ability to prevent tau toxicity and seeding of tau pathology does not necessarily go together. Particularly, chimerization of 4E6 increased its charge from 6.5 to 9.6, which blocked its uptake into human and mouse cells. Furthermore, h4E6 had altered binding characteristics despite intact binding sites, compared to the mouse antibody. Importantly, these changes in uptake and binding substantially decreased its efficacy in preventing tau toxicity, although under certain conditions it did prevent pathological seeding of tau. CONCLUSIONS:These results indicate that efficacy of chimeric/humanized tau antibodies should be thoroughly characterized prior to clinical trials, which may require further engineering to maintain or improve their therapeutic potential. FUND: National Institutes of Health (NS077239, AG032611, R24OD18340, R24OD018339 and RR027990, Alzheimer's Association (2016-NIRG-397228) and Blas Frangione Foundation.
PMID: 30910484
ISSN: 2352-3964
CID: 3778772

Quantitative Comparison of Proteomes Using SILAC

Deng, Jingjing; Erdjument-Bromage, Hediye; Neubert, Thomas A
Stable isotope labeling by amino acids in cell culture (SILAC) has become very popular as a quantitative proteomic method since it was firstly introduced by Matthias Mann's group in 2002. It is a metabolic labeling strategy in which isotope-labeled amino acids are metabolically incorporated in vivo into proteins during translation. After natural (light) or heavy amino acid incorporation, differentially labeled samples are mixed immediately after cell lysis and before any further processing, which minimizes quantitative errors caused by handling different samples in parallel. In this unit, we describe protocols for basic duplex SILAC, triplex SILAC for use in nondividing cells such as neurons, and for measuring amounts of newly synthesized proteins. © 2018 by John Wiley & Sons, Inc.
PMID: 30238645
ISSN: 1934-3663
CID: 3300892

Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) for Quantitative Proteomics

Hoedt, Esthelle; Zhang, Guoan; Neubert, Thomas A
Stable isotope labeling by amino acids in cell culture (SILAC) is a powerful approach for high-throughput quantitative proteomics. SILAC allows highly accurate protein quantitation through metabolic encoding of whole cell proteomes using stable isotope labeled amino acids. Since its introduction in 2002, SILAC has become increasingly popular. In this chapter we review the methodology and application of SILAC, with an emphasis on three research areas: dynamics of posttranslational modifications, protein-protein interactions, and protein turnover.
PMID: 31347069
ISSN: 0065-2598
CID: 3988262

A PHASE 0 PHARMACODYNAMIC AND PHARMACOKINETIC STUDY OF EVEROLIMUS IN VESTIBULAR SCHWANNOMA (VS) AND MENINGIOMA PATIENTS [Meeting Abstract]

Karajannis, Matthias; Goldberg, Judith; Roland, J. Thomas; Sen, Chandranath; Placantonakis, Dimitris; Golfinos, John; Allen, Jeffrey; Dunbar, Erin; Plotkin, Scott; Akshintala, Srivandana; Schneider, Robert; Deng, Jingjing; Neubert, Thomas A.; Giancotti, Filippo; Zagzag, David; Blakeley, Jaishri O.
ISI:000509478700053
ISSN: 1522-8517
CID: 4511792

A PHASE 0 PHARMACODYNAMIC AND PHARMACOKINETIC STUDY OF EVEROLIMUS IN VESTIBULAR SCHWANNOMA (VS) AND MENINGIOMA PATIENTS [Meeting Abstract]

Karajannis, Matthias; Wang, Shiyang; Goldberg, Judith; Roland, Thomas; Sen, Chandranath; Placantonakis, Dimitris; Golfinos, John; Allen, Jeffrey; Dunbar, Erin; Plotkin, Scott; Akshintala, Srivandana; Schneider, Robert; Deng, Jingjing; Neubert, Thomas; Giancotti, Filippo; Blakeley, Jaishri
ISI:000473243700215
ISSN: 1522-8517
CID: 4511782

HSP90-incorporating chaperome networks as biosensor for disease-related pathways in patient-specific midbrain dopamine neurons

Kishinevsky, Sarah; Wang, Tai; Rodina, Anna; Chung, Sun Young; Xu, Chao; Philip, John; Taldone, Tony; Joshi, Suhasini; Alpaugh, Mary L; Bolaender, Alexander; Gutbier, Simon; Sandhu, Davinder; Fattahi, Faranak; Zimmer, Bastian; Shah, Smit K; Chang, Elizabeth; Inda, Carmen; Koren, John; Saurat, Nathalie G; Leist, Marcel; Gross, Steven S; Seshan, Venkatraman E; Klein, Christine; Tomishima, Mark J; Erdjument-Bromage, Hediye; Neubert, Thomas A; Henrickson, Ronald C; Chiosis, Gabriela; Studer, Lorenz
Environmental and genetic risk factors contribute to Parkinson's Disease (PD) pathogenesis and the associated midbrain dopamine (mDA) neuron loss. Here, we identify early PD pathogenic events by developing methodology that utilizes recent innovations in human pluripotent stem cells (hPSC) and chemical sensors of HSP90-incorporating chaperome networks. We show that events triggered by PD-related genetic or toxic stimuli alter the neuronal proteome, thereby altering the stress-specific chaperome networks, which produce changes detected by chemical sensors. Through this method we identify STAT3 and NF-κB signaling activation as examples of genetic stress, and phospho-tyrosine hydroxylase (TH) activation as an example of toxic stress-induced pathways in PD neurons. Importantly, pharmacological inhibition of the stress chaperome network reversed abnormal phospho-STAT3 signaling and phospho-TH-related dopamine levels and rescued PD neuron viability. The use of chemical sensors of chaperome networks on hPSC-derived lineages may present a general strategy to identify molecular events associated with neurodegenerative diseases.
PMID: 30341316
ISSN: 2041-1723
CID: 3370112

The vimentin intermediate filament network restrains regulatory T-cell suppression of graft-versus-host disease

McDonald-Hyman, Cameron; Muller, James T; Loschi, Michael; Thangavelu, Govindarajan; Saha, Asim; Kumari, Sudha; Reichenbach, Dawn K; Smith, Michelle J; Zhang, Guoan; Koehn, Brent H; Lin, Jiqiang; Mitchell, Jason S; Fife, Brian T; Panoskaltsis-Mortari, Angela; Feser, Colby J; Kirchmeier, Andrew Kemal; Osborn, Mark J; Hippen, Keli L; Kelekar, Ameeta; Serody, Jonathan S; Turka, Laurence A; Munn, David H; Chi, Hongbo; Neubert, Thomas A; Dustin, Michael L; Blazar, Bruce R
Regulatory T-cells (Treg) are critical for maintaining immune homeostasis. However, current Treg immunotherapies do not optimally treat inflammatory diseases in patients. Understanding the cellular processes that control Treg function may allow for the augmentation of therapeutic efficacy. In contrast to activated conventional T-cells, where protein kinase C-θ (PKC-θ) localizes to the contact-point between T-cells and antigen-presenting cells, in human and mouse Treg, PKC-θ localizes to the opposite end of the cell in the distal pole complex (DPC). Here, using a phosphoproteomic screen, we identified the intermediate filament vimentin as a PKC-θ phospho-target and show that vimentin forms a DPC superstructure on which PKC-θ accumulates. Treatment of mouse Treg with either a clinically relevant PKC-θ inhibitor or vimentin siRNA disrupted vimentin and enhanced Treg metabolic and suppressive activity. Moreover, vimentin-disrupted mouse Treg were significantly better than controls in suppressing alloreactive T-cell priming in graft-versus-host disease, and graft-versus-host disease lethality, using a complete MHC mismatch mouse model of acute graft-versus-host disease (C57BL/6 donor in to BALB/c host). Interestingly, vimentin disruption augmented suppressor function of PKC-θ-deficient mouse Treg. This suggests that enhanced Treg activity after PKC-θ inhibition is secondary to effects on vimentin, not just PKC-θ kinase activity inhibition. Our data demonstrated that vimentin is a key metabolic and functional controller of Treg activity, and provide proof-of-principle that disrupting vimentin is a feasible, translationally relevant method to enhance Treg potency.
PMID: 30106752
ISSN: 1558-8238
CID: 3254572

Dppa2/4 Facilitate Epigenetic Remodeling during Reprogramming to Pluripotency

Hernandez, Charles; Wang, Zheng; Ramazanov, Bulat; Tang, Yin; Mehta, Sameet; Dambrot, Cheryl; Lee, Yu-Wei; Tessema, Kaleab; Kumar, Ishan; Astudillo, Michael; Neubert, Thomas A; Guo, Shangqin; Ivanova, Natalia B
As somatic cells are converted into induced pluripotent stem cells (iPSCs), their chromatin is remodeled to a pluripotent configuration with unique euchromatin-to-heterochromatin ratios, DNA methylation patterns, and enhancer and promoter status. The molecular machinery underlying this process is largely unknown. Here, we show that embryonic stem cell (ESC)-specific factors Dppa2 and Dppa4 play a key role in resetting the epigenome to a pluripotent state. They are induced in reprogramming intermediates, function as a heterodimer, and are required for efficient reprogramming of mouse and human cells. When co-expressed with Oct4, Klf4, Sox2, and Myc (OKSM) factors, Dppa2/4 yield reprogramming efficiencies that exceed 80% and accelerate reprogramming kinetics, generating iPSCs in 2 to 4 days. When bound to chromatin, Dppa2/4 initiate global chromatin decompaction via the DNA damage response pathway and contribute to downregulation of somatic genes and activation of ESC enhancers, all of which enables an efficient transition to pluripotency. Our work provides critical insights into how the epigenome is remodeled during acquisition of pluripotency.
PMCID:6128737
PMID: 30146411
ISSN: 1875-9777
CID: 3255712