Searched for: in-biosketch:yes
person:neubet01
Tau antibody chimerization alters its charge and binding, thereby reducing its cellular uptake and efficacy
Congdon, Erin E; Chukwu, Jessica E; Shamir, Dov B; Deng, Jingjing; Ujla, Devyani; Sait, Hameetha B R; Neubert, Thomas A; Kong, Xiang-Peng; Sigurdsson, Einar M
BACKGROUND:Bringing antibodies from pre-clinical studies to human trials requires humanization, but this process may alter properties that are crucial for efficacy. Since pathological tau protein is primarily intraneuronal in Alzheimer's disease, the most efficacious antibodies should work both intra- and extracellularly. Thus, changes which impact uptake or antibody binding will affect antibody efficacy. METHODS:Initially, we examined four tau mouse monoclonal antibodies with naturally differing charges. We quantified their neuronal uptake, and efficacy in preventing toxicity and pathological seeding induced by human-derived pathological tau. Later, we generated a human chimeric 4E6 (h4E6), an antibody with well documented efficacy in multiple tauopathy models. We compared the uptake and efficacy of unmodified and chimeric antibodies in neuronal and differentiated neuroblastoma cultures. Further, we analyzed tau binding using ELISA assays. FINDINGS/RESULTS:Neuronal uptake of tau antibodies and their efficacy strongly depends on antibody charge. Additionally, their ability to prevent tau toxicity and seeding of tau pathology does not necessarily go together. Particularly, chimerization of 4E6 increased its charge from 6.5 to 9.6, which blocked its uptake into human and mouse cells. Furthermore, h4E6 had altered binding characteristics despite intact binding sites, compared to the mouse antibody. Importantly, these changes in uptake and binding substantially decreased its efficacy in preventing tau toxicity, although under certain conditions it did prevent pathological seeding of tau. CONCLUSIONS:These results indicate that efficacy of chimeric/humanized tau antibodies should be thoroughly characterized prior to clinical trials, which may require further engineering to maintain or improve their therapeutic potential. FUND: National Institutes of Health (NS077239, AG032611, R24OD18340, R24OD018339 and RR027990, Alzheimer's Association (2016-NIRG-397228) and Blas Frangione Foundation.
PMID: 30910484
ISSN: 2352-3964
CID: 3778772
Quantitative Comparison of Proteomes Using SILAC
Deng, Jingjing; Erdjument-Bromage, Hediye; Neubert, Thomas A
Stable isotope labeling by amino acids in cell culture (SILAC) has become very popular as a quantitative proteomic method since it was firstly introduced by Matthias Mann's group in 2002. It is a metabolic labeling strategy in which isotope-labeled amino acids are metabolically incorporated in vivo into proteins during translation. After natural (light) or heavy amino acid incorporation, differentially labeled samples are mixed immediately after cell lysis and before any further processing, which minimizes quantitative errors caused by handling different samples in parallel. In this unit, we describe protocols for basic duplex SILAC, triplex SILAC for use in nondividing cells such as neurons, and for measuring amounts of newly synthesized proteins. © 2018 by John Wiley & Sons, Inc.
PMID: 30238645
ISSN: 1934-3663
CID: 3300892
Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) for Quantitative Proteomics
Hoedt, Esthelle; Zhang, Guoan; Neubert, Thomas A
Stable isotope labeling by amino acids in cell culture (SILAC) is a powerful approach for high-throughput quantitative proteomics. SILAC allows highly accurate protein quantitation through metabolic encoding of whole cell proteomes using stable isotope labeled amino acids. Since its introduction in 2002, SILAC has become increasingly popular. In this chapter we review the methodology and application of SILAC, with an emphasis on three research areas: dynamics of posttranslational modifications, protein-protein interactions, and protein turnover.
PMID: 31347069
ISSN: 0065-2598
CID: 3988262
A PHASE 0 PHARMACODYNAMIC AND PHARMACOKINETIC STUDY OF EVEROLIMUS IN VESTIBULAR SCHWANNOMA (VS) AND MENINGIOMA PATIENTS [Meeting Abstract]
Karajannis, Matthias; Goldberg, Judith; Roland, J. Thomas; Sen, Chandranath; Placantonakis, Dimitris; Golfinos, John; Allen, Jeffrey; Dunbar, Erin; Plotkin, Scott; Akshintala, Srivandana; Schneider, Robert; Deng, Jingjing; Neubert, Thomas A.; Giancotti, Filippo; Zagzag, David; Blakeley, Jaishri O.
ISI:000509478700053
ISSN: 1522-8517
CID: 4511792
A PHASE 0 PHARMACODYNAMIC AND PHARMACOKINETIC STUDY OF EVEROLIMUS IN VESTIBULAR SCHWANNOMA (VS) AND MENINGIOMA PATIENTS [Meeting Abstract]
Karajannis, Matthias; Wang, Shiyang; Goldberg, Judith; Roland, Thomas; Sen, Chandranath; Placantonakis, Dimitris; Golfinos, John; Allen, Jeffrey; Dunbar, Erin; Plotkin, Scott; Akshintala, Srivandana; Schneider, Robert; Deng, Jingjing; Neubert, Thomas; Giancotti, Filippo; Blakeley, Jaishri
ISI:000473243700215
ISSN: 1522-8517
CID: 4511782
HSP90-incorporating chaperome networks as biosensor for disease-related pathways in patient-specific midbrain dopamine neurons
Kishinevsky, Sarah; Wang, Tai; Rodina, Anna; Chung, Sun Young; Xu, Chao; Philip, John; Taldone, Tony; Joshi, Suhasini; Alpaugh, Mary L; Bolaender, Alexander; Gutbier, Simon; Sandhu, Davinder; Fattahi, Faranak; Zimmer, Bastian; Shah, Smit K; Chang, Elizabeth; Inda, Carmen; Koren, John; Saurat, Nathalie G; Leist, Marcel; Gross, Steven S; Seshan, Venkatraman E; Klein, Christine; Tomishima, Mark J; Erdjument-Bromage, Hediye; Neubert, Thomas A; Henrickson, Ronald C; Chiosis, Gabriela; Studer, Lorenz
Environmental and genetic risk factors contribute to Parkinson's Disease (PD) pathogenesis and the associated midbrain dopamine (mDA) neuron loss. Here, we identify early PD pathogenic events by developing methodology that utilizes recent innovations in human pluripotent stem cells (hPSC) and chemical sensors of HSP90-incorporating chaperome networks. We show that events triggered by PD-related genetic or toxic stimuli alter the neuronal proteome, thereby altering the stress-specific chaperome networks, which produce changes detected by chemical sensors. Through this method we identify STAT3 and NF-κB signaling activation as examples of genetic stress, and phospho-tyrosine hydroxylase (TH) activation as an example of toxic stress-induced pathways in PD neurons. Importantly, pharmacological inhibition of the stress chaperome network reversed abnormal phospho-STAT3 signaling and phospho-TH-related dopamine levels and rescued PD neuron viability. The use of chemical sensors of chaperome networks on hPSC-derived lineages may present a general strategy to identify molecular events associated with neurodegenerative diseases.
PMID: 30341316
ISSN: 2041-1723
CID: 3370112
The vimentin intermediate filament network restrains regulatory T-cell suppression of graft-versus-host disease
McDonald-Hyman, Cameron; Muller, James T; Loschi, Michael; Thangavelu, Govindarajan; Saha, Asim; Kumari, Sudha; Reichenbach, Dawn K; Smith, Michelle J; Zhang, Guoan; Koehn, Brent H; Lin, Jiqiang; Mitchell, Jason S; Fife, Brian T; Panoskaltsis-Mortari, Angela; Feser, Colby J; Kirchmeier, Andrew Kemal; Osborn, Mark J; Hippen, Keli L; Kelekar, Ameeta; Serody, Jonathan S; Turka, Laurence A; Munn, David H; Chi, Hongbo; Neubert, Thomas A; Dustin, Michael L; Blazar, Bruce R
Regulatory T-cells (Treg) are critical for maintaining immune homeostasis. However, current Treg immunotherapies do not optimally treat inflammatory diseases in patients. Understanding the cellular processes that control Treg function may allow for the augmentation of therapeutic efficacy. In contrast to activated conventional T-cells, where protein kinase C-θ (PKC-θ) localizes to the contact-point between T-cells and antigen-presenting cells, in human and mouse Treg, PKC-θ localizes to the opposite end of the cell in the distal pole complex (DPC). Here, using a phosphoproteomic screen, we identified the intermediate filament vimentin as a PKC-θ phospho-target and show that vimentin forms a DPC superstructure on which PKC-θ accumulates. Treatment of mouse Treg with either a clinically relevant PKC-θ inhibitor or vimentin siRNA disrupted vimentin and enhanced Treg metabolic and suppressive activity. Moreover, vimentin-disrupted mouse Treg were significantly better than controls in suppressing alloreactive T-cell priming in graft-versus-host disease, and graft-versus-host disease lethality, using a complete MHC mismatch mouse model of acute graft-versus-host disease (C57BL/6 donor in to BALB/c host). Interestingly, vimentin disruption augmented suppressor function of PKC-θ-deficient mouse Treg. This suggests that enhanced Treg activity after PKC-θ inhibition is secondary to effects on vimentin, not just PKC-θ kinase activity inhibition. Our data demonstrated that vimentin is a key metabolic and functional controller of Treg activity, and provide proof-of-principle that disrupting vimentin is a feasible, translationally relevant method to enhance Treg potency.
PMID: 30106752
ISSN: 1558-8238
CID: 3254572
Dppa2/4 Facilitate Epigenetic Remodeling during Reprogramming to Pluripotency
Hernandez, Charles; Wang, Zheng; Ramazanov, Bulat; Tang, Yin; Mehta, Sameet; Dambrot, Cheryl; Lee, Yu-Wei; Tessema, Kaleab; Kumar, Ishan; Astudillo, Michael; Neubert, Thomas A; Guo, Shangqin; Ivanova, Natalia B
As somatic cells are converted into induced pluripotent stem cells (iPSCs), their chromatin is remodeled to a pluripotent configuration with unique euchromatin-to-heterochromatin ratios, DNA methylation patterns, and enhancer and promoter status. The molecular machinery underlying this process is largely unknown. Here, we show that embryonic stem cell (ESC)-specific factors Dppa2 and Dppa4 play a key role in resetting the epigenome to a pluripotent state. They are induced in reprogramming intermediates, function as a heterodimer, and are required for efficient reprogramming of mouse and human cells. When co-expressed with Oct4, Klf4, Sox2, and Myc (OKSM) factors, Dppa2/4 yield reprogramming efficiencies that exceed 80% and accelerate reprogramming kinetics, generating iPSCs in 2 to 4Â days. When bound to chromatin, Dppa2/4 initiate global chromatin decompaction via the DNA damage response pathway and contribute to downregulation of somatic genes and activation of ESC enhancers, all of which enables an efficient transition to pluripotency. Our work provides critical insights into how the epigenome is remodeled during acquisition of pluripotency.
PMCID:6128737
PMID: 30146411
ISSN: 1875-9777
CID: 3255712
Communicating the nutritional value of sugar inDrosophila
Abu, Farhan; Wang, Justin G; Oh, Yangkyun; Deng, Jingjing; Neubert, Thomas A; Suh, Greg S B
Sweet-insensitiveDrosophilamutants are unable to readily identify sugar. In presence of wild-type (WT) flies, however, these mutant flies demonstrated a marked increase in their preference for nutritive sugar. Real-time recordings of starved WT flies revealed that these flies discharge a drop from their gut end after consuming nutritive sugars, but not nonnutritive sugars. We proposed that the drop may contain a molecule(s) named calorie-induced secreted factor (CIF), which serves as a signal to inform other flies about its nutritional value. Consistent with this, we observed a robust preference of flies for nutritive sugar containing CIF over nutritive sugar without CIF. Feeding appears to be a prerequisite for the release of CIF, given that fed flies did not produce it. Additionally, correlation analyses and pharmacological approaches suggest that the nutritional value, rather than the taste, of the consumed sugar correlates strongly with the amount (or intensity) of the released CIF. We observed that the release of this attractant signal requires the consumption of macronutrients, specifically nutritive sugars and l-enantiomer essential amino acids (l-eAAs), but it is negligibly released when flies are fed nonnutritive sugars, unnatural d-enantiomer essential amino acids (d-eAAs), fatty acids, alcohol, or salts. Finally, CIF (i) is not detected by the olfactory system, (ii) is not influenced by the sex of the fly, and (iii) is not limited to one species ofDrosophila.
PMCID:5866586
PMID: 29507251
ISSN: 1091-6490
CID: 2975122
A Non-canonical BCOR-PRC1.1 Complex Represses Differentiation Programs in Human ESCs
Wang, Zheng; Gearhart, Micah D; Lee, Yu-Wei; Kumar, Ishan; Ramazanov, Bulat; Zhang, Yan; Hernandez, Charles; Lu, Alice Y; Neuenkirchen, Nils; Deng, Jingjing; Jin, Jiaqi; Kluger, Yuval; Neubert, Thomas A; Bardwell, Vivian J; Ivanova, Natalia B
Polycomb group proteins regulate self-renewal and differentiation in many stem cell systems. When assembled into two canonical complexes, PRC1 and PRC2, they sequentially deposit H3K27me3 and H2AK119ub histone marks and establish repressive chromatin, referred to as Polycomb domains. Non-canonical PRC1 complexes retain RING1/RNF2 E3-ubiquitin ligases but have unique sets of accessory subunits. How these non-canonical complexes recognize and regulate their gene targets remains poorly understood. Here, we show that the BCL6 co-repressor (BCOR), a member of the PRC1.1 complex, is critical for maintaining primed pluripotency in human embryonic stem cells (ESCs). BCOR depletion leads to the erosion of Polycomb domains at key developmental loci and the initiation of differentiation along endoderm and mesoderm lineages. The C terminus of BCOR regulates the assembly and targeting of the PRC1.1 complex, while the N terminus contributes to BCOR-PRC1.1 repressor function. Our findings advance understanding of Polycomb targeting and repression in ESCs and could apply broadly across developmental systems.
PMCID:5797497
PMID: 29337181
ISSN: 1875-9777
CID: 2916162