Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:nudlee01

Total Results:

182


Allosteric activation of SARS-CoV-2 RdRp by remdesivir triphosphate and other phosphorylated nucleotides [PrePrint]

Wang, Bing; Svetlov, Vladimir; Wolf, Yuri I; Koonin, Eugene V; Nudler, Evgeny; Artsimovitch, Irina
The catalytic subunit of SARS-CoV-2 RNA-dependent RNA polymerase (RdRp), Nsp12, has a unique NiRAN domain that transfers nucleoside monophosphates to the Nsp9 protein. The NiRAN and RdRp modules form a dynamic interface distant from their catalytic sites and both activities are essential for viral replication. We report that codon-optimized (for the pause-free translation) Nsp12 exists in inactive state in which NiRAN/RdRp interactions are broken, whereas translation by slow ribosomes and incubation with accessory Nsp7/8 subunits or NTPs partially rescue RdRp activity. Our data show that adenosine and remdesivir triphosphates promote synthesis of A-less RNAs, as does ppGpp, while amino acid substitutions at the NiRAN/RdRp interface augment activation, suggesting that ligand binding to the NiRAN catalytic site modulates RdRp activity. The existence of allosterically-linked nucleotidyl transferase sites that utilize the same substrates has important implications for understanding the mechanism of SARS-CoV-2 replication and design of its inhibitors.
PMCID:8095223
PMID: 33948598
ISSN: 2692-8205
CID: 4900612

Structures of monomeric and dimeric PRC2:EZH1 reveal flexible modules involved in chromatin compaction

Grau, Daniel; Zhang, Yixiao; Lee, Chul-Hwan; Valencia-Sánchez, Marco; Zhang, Jenny; Wang, Miao; Holder, Marlene; Svetlov, Vladimir; Tan, Dongyan; Nudler, Evgeny; Reinberg, Danny; Walz, Thomas; Armache, Karim-Jean
Polycomb repressive complex 2 (PRC2) is a histone methyltransferase critical for maintaining gene silencing during eukaryotic development. In mammals, PRC2 activity is regulated in part by the selective incorporation of one of two paralogs of the catalytic subunit, EZH1 or EZH2. Each of these enzymes has specialized biological functions that may be partially explained by differences in the multivalent interactions they mediate with chromatin. Here, we present two cryo-EM structures of PRC2:EZH1, one as a monomer and a second one as a dimer bound to a nucleosome. When bound to nucleosome substrate, the PRC2:EZH1 dimer undergoes a dramatic conformational change. We demonstrate that mutation of a divergent EZH1/2 loop abrogates the nucleosome-binding and methyltransferase activities of PRC2:EZH1. Finally, we show that PRC2:EZH1 dimers are more effective than monomers at promoting chromatin compaction, and the divergent EZH1/2 loop is essential for this function, thereby tying together the methyltransferase, nucleosome-binding, and chromatin-compaction activities of PRC2:EZH1. We speculate that the conformational flexibility and the ability to dimerize enable PRC2 to act on the varied chromatin substrates it encounters in the cell.
PMID: 33514705
ISSN: 2041-1723
CID: 4767922

Pre-termination Transcription Complex: Structure and Function

Hao, Zhitai; Epshtein, Vitaly; Kim, Kelly H; Proshkin, Sergey; Svetlov, Vladimir; Kamarthapu, Venu; Bharati, Binod; Mironov, Alexander; Walz, Thomas; Nudler, Evgeny
Rho is a general transcription termination factor playing essential roles in RNA polymerase (RNAP) recycling, gene regulation, and genomic stability in most bacteria. Traditional models of transcription termination postulate that hexameric Rho loads onto RNA prior to contacting RNAP and then translocates along the transcript in pursuit of the moving RNAP to pull RNA from it. Here, we report the cryoelectron microscopy (cryo-EM) structures of two termination process intermediates. Prior to interacting with RNA, Rho forms a specific "pre-termination complex" (PTC) with RNAP and elongation factors NusA and NusG, which stabilize the PTC. RNA exiting RNAP interacts with NusA before entering the central channel of Rho from the distal C-terminal side of the ring. We map the principal interactions in the PTC and demonstrate their critical role in termination. Our results support a mechanism in which the formation of a persistent PTC is a prerequisite for termination.
PMID: 33296676
ISSN: 1097-4164
CID: 4751682

The structure of a virus-encoded nucleosome

Valencia-Sanchez, Marco Igor; Abini-Agbomson, Stephen; Wang, Miao; Lee, Rachel; Vasilyev, Nikita; Zhang, Jenny; De Ioannes, Pablo; La Scola, Bernard; Talbert, Paul; Henikoff, Steve; Nudler, Evgeny; Erives, Albert; Armache, Karim-Jean
ISI:000645514900002
ISSN: 1545-9993
CID: 5852432

Structures of monomeric and dimeric PRC2:EZH1 reveal flexible modules involved in chromatin compaction

Grau, Daniel; Zhang, Yixiao; Lee, Chul-Hwan; Valencia-Sanchez, Marco; Zhang, Jenny; Wang, Miao; Holder, Marlene; Svetlov, Vladimir; Tan, Dongyan; Nudler, Evgeny; Reinberg, Danny; Walz, Thomas; Armache, Karim-Jean
ISI:000684846200013
CID: 5852372

CydDC functions as a cytoplasmic cystine reductase to sensitize Escherichia coli to oxidative stress and aminoglycosides

Mironov, Alexander; Seregina, Tatyana; Shatalin, Konstantin; Nagornykh, Maxim; Shakulov, Rustem; Nudler, Evgeny
l-cysteine is the source of all bacterial sulfurous biomolecules. However, the cytoplasmic level of l-cysteine must be tightly regulated due to its propensity to reduce iron and drive damaging Fenton chemistry. It has been proposed that in Escherichia coli the component of cytochrome bd-I terminal oxidase, the CydDC complex, shuttles excessive l-cysteine from the cytoplasm to the periplasm, thereby maintaining redox homeostasis. Here, we provide evidence for an alternative function of CydDC by demonstrating that the cydD phenotype, unlike that of the bona fide l-cysteine exporter eamA, parallels that of the l-cystine importer tcyP. Chromosomal induction of eamA, but not of cydDC, from a strong pLtetO-1 promoter (Ptet) leads to the increased level of extracellular l-cysteine, whereas induction of cydDC or tcyP causes the accumulation of cytoplasmic l-cysteine. Congruently, inactivation of cydD renders cells resistant to hydrogen peroxide and to aminoglycoside antibiotics. In contrast, induction of cydDC sensitizes cells to oxidative stress and aminoglycosides, which can be suppressed by eamA overexpression. Furthermore, inactivation of the ferric uptake regulator (fur) in Ptet-cydDC or Ptet-tcyP cells results in dramatic loss of survival, whereas catalase (katG) overexpression suppresses the hypersensitivity of both strains to H2O2 These results establish CydDC as a reducer of cytoplasmic cystine, as opposed to an l-cysteine exporter, and further elucidate a link between oxidative stress, antibiotic resistance, and sulfur metabolism.
PMID: 32900959
ISSN: 1091-6490
CID: 4622762

Use of advanced mass spectrometry techniques to explore novel metabolic differences in varying grades of meningiomas [Meeting Abstract]

Rabow, Z; Heil, H; Showalter, M; Morningstar, T; Nudler, E; Fiehn, O; Lechpammer, M
Rationale: As more information emerges on metabolic changes in the brain from genetic mutations and disease, mass spectrometry methodologies are needed to investigate cellular changes in primary brain tumors. Many approaches use technologies that lack sensitivity and selectivity, which hinders discovery of potential novel diagnostic and prognostic features. Here, we present a new high throughput sample preparation for the use of clinical metabolomics applied to meningiomas.
Method(s): Fresh frozen tissue from 12 patients (57% women, 43% men; mean age: 48) who underwent surgical resection for newly diagnosed meningiomas. We collected 10 mg of tissue and extracted for GC-TOF (primary metabolism), RPLC-QTOF ESI(6) (lipidomics) and HILIC-HRMS ESI(6) (biogenic amines) analyses.
Result(s): Our novel methods allow us to use isotope standards and MS2 quantification of key disease metabolites in addition to untargeted analysis for both metabolomics and lipidomics. These methods allow us to provide quantification for knowns with the ability to also measure unknown features. Primary metabolism and lipidomics showed significant differences between Grade I and Grade II tumors. Over one thousand total metabolites were identified and annotated. Metabolites were grouped into one of fifteen classes based on chemical ontology and function. The classes detected were as follows: total amino acids (AA), basic AA, cyclic AA, sulfur-containing AA, branchedchain AA, dipeptides, histidine-containing dipeptides, vitamins and cofactors, glutathione metabolites, acylcarnitine's, sphingomyelins, phosphatidylethanolamines, phosphatidylinositol's, cardiolipins, and nucleic acids. Bis(monoacylglycero) phosphates were over 2-fold increased in atypical meningiomas versus Grade I, indicating lysosome activation. Thymine containing nucleic acids and biogenic monoamines were 2-fold higher in Grade I compared to Grade II tumors.
Conclusion(s): Using novel combined targeted and untargeted metabolomics, we found multiple classes of metabolites that were enriched in Grade II meningiomas compared to Grade I, pointing towards possible pathways that drive malignancy and biomarkers that could be useful for diagnosis and treatment selection
EMBASE:632060218
ISSN: 1554-6578
CID: 4536592

Structural basis of ER-associated protein degradation mediated by the Hrd1 ubiquitin ligase complex

Wu, Xudong; Siggel, Marc; Ovchinnikov, Sergey; Mi, Wei; Svetlov, Vladimir; Nudler, Evgeny; Liao, Maofu; Hummer, Gerhard; Rapoport, Tom A
Misfolded luminal endoplasmic reticulum (ER) proteins undergo ER-associated degradation (ERAD-L): They are retrotranslocated into the cytosol, polyubiquitinated, and degraded by the proteasome. ERAD-L is mediated by the Hrd1 complex (composed of Hrd1, Hrd3, Der1, Usa1, and Yos9), but the mechanism of retrotranslocation remains mysterious. Here, we report a structure of the active Hrd1 complex, as determined by cryo-electron microscopy analysis of two subcomplexes. Hrd3 and Yos9 jointly create a luminal binding site that recognizes glycosylated substrates. Hrd1 and the rhomboid-like Der1 protein form two "half-channels" with cytosolic and luminal cavities, respectively, and lateral gates facing one another in a thinned membrane region. These structures, along with crosslinking and molecular dynamics simulation results, suggest how a polypeptide loop of an ERAD-L substrate moves through the ER membrane.
PMID: 32327568
ISSN: 1095-9203
CID: 4402392

Towards the unified principles of transcription termination

Svetlov, Vladimir; Nudler, Evgeny
Discovery of the role of bacterial RNase J1 in termination of transcription suggests common allosteric principles and mechanistic congruency of termination between bacteria and eukaryotes, in which an unrelated RNase Xrn2/Rat1 plays a similar role.
PMID: 31886560
ISSN: 1460-2075
CID: 4252372

iRAPs curb antisense transcription in E. coli

Magán, Andrés; Amman, Fabian; El-Isa, Fatinah; Hartl, Natascha; Shamovsky, Ilya; Nudler, Evgeny; Schroeder, Renée; Sedlyarova, Nadezda
RNA polymerase-binding RNA aptamers (RAPs) are natural RNA elements that control transcription in cis by directly contacting RNA polymerase. Many RAPs inhibit transcription by inducing Rho-dependent termination in Escherichia coli. Here, we studied the role of inhibitory RAPs (iRAPs) in modulation of antisense transcription (AT) using in silico and in vivo approaches. We revisited the antisense transcriptome in cells with impaired AT regulators (Rho, H-NS and RNaseIII) and searched for the presence of RAPs within antisense RNAs. Many of these RAPs were found at key genomic positions where they terminate AT. By exploring the activity of several RAPs both in a reporter system and in their natural genomic context, we confirmed their significant role in AT regulation. RAPs coordinate Rho activity at the antisense strand and terminate antisense transcripts. In some cases, they stimulated sense expression by alleviating ongoing transcriptional interference. Essentially, our data postulate RAPs as key determinants of Rho-mediated AT regulation in E. coli.
PMID: 31535128
ISSN: 1362-4962
CID: 4098102